7,297 research outputs found

    Some ideas and questions regarding space station design for human use

    Get PDF
    Design concepts for interior utility of space station crew areas are offered. Planning of a living environment that maintains elements of humanity is stressed

    Monte Carlo study of cooperativity in homopolypeptides

    Get PDF
    ©1992 American Institute of PhysicsThe electronic version of this article is the complete one and can be found online at: http://link.aip.org/link/?JCPSA6/97/9412/1DOI:10.1063/1.463317A discretized model of globular proteins is employed in a Monte Carlo study of the helix-coil transition of polyalanine and the collapse transition of polyvaline. The present lattice realization permits real protein crystal structures to be represented at the level of 1 A resolution. Furthermore, the Monte Carlo dynamic scheme is capable of moving elements of assembled secondary and supersecondary structure. The potentials of mean force for the interactions are constructed from the statistics of a set of high resolution x-ray structures of nonhomologous proteins. The cooperativity of formation of ordered structures is found to be larger when the major contributions to the conformational energy of the low temperature states come from hydrogen bonds and short range conformational propensities. The secondary structure seen in the folded state is the result of an interplay between the short and long range interactions. Compactness itself, driven by long range, nonspecific interactions, seems to be insufficient to generate any appreciable secondary structure. A detailed examination of the dynamics of highly helical model proteins demonstrates that all elements of secondary structure are mobile in the present algorithm, and thus the folding pathways do not depend on the use of a lattice approximation. Possible applications of the present model to the prediction of protein 3D structures are briefly discussed

    High-occupancy effects and stimulation phenomena in semiconductor microcavities

    Get PDF
    This paper describes recent work on high-occupancy effects in semiconductor microcavities, with emphasis on the variety of new physics and the potential for applications that has been demonstrated recently. It is shown that the ability to manipulate both exciton and photon properties, and how they interact together to form strongly coupled exciton-photon coupled modes, exciton polaritons, leads to a number of very interesting phenomena, which are either difficult or impossible to achieve in bulk semiconductors or quantum wells. The very low polariton density of states enables state occupancies greater than one to be easily achieved, and hence stimulation phenomena to be realized under conditions of resonant excitation. The particular form of the lower polariton dispersion curve in microcavities allows energy and momentum conserving polariton-polariton scattering under resonant excitation. Stimulated scattering of the bosonic quasi-particles occurs to the emitting state at the center of the Brillouin zone, and to a companion state at high wave vector. The stimulation phenomena lead to the formation of highly occupied states with macroscopic coherence in two specific regions of k space. The results are contrasted with phenomena that occur under conditions of nonresonant excitation. Prospects to achieve "polariton lasing" under nonresonant excitation, and high-gain, room-temperature ultrafast amplifiers and low-threshold optical parametric oscillator under resonant excitation conditions are discussed

    Polariton-mediated Raman scattering in microcavities: A Green's function approach

    Full text link
    We present calculations of the intensity of polariton-mediated inelastic light scattering in semiconductor microcavities within a Green's function framework. In addition to reproducing the strong coupling of light and matter, this method also enables the inclusion of damping mechanisms in a consistent way. Our results show excellent agreement with recent Raman scattering experiments.Comment: 6 pages, 1 figur

    Direct measurement of the hole-nuclear spin interaction in single quantum dots

    Full text link
    We use photoluminescence spectroscopy of ''bright'' and ''dark'' exciton states in single InP/GaInP quantum dots to measure hyperfine interaction of the valence band hole with nuclear spins polarized along the sample growth axis. The ratio of the hyperfine constants for the hole (C) and electron (A) is found to be C/A~-0.11. In InP dots the contribution of spin 1/2 phosphorus nuclei to the hole-nuclear interaction is weak, which enables us to determine experimentally the value of C for spin 9/2 indium nuclei as C_In~-5 micro-eV. This high value of C is in good agreement with recent theoretical predictions and suggests that the hole-nuclear spin interaction has to be taken into account when considering spin qubits based on holes.Comment: to be submitted to Phys Rev Let

    Beating of exciton-dressed states in a single semiconductor InGaAs/GaAs quantum dot

    Get PDF
    We report picosecond control of excitonic dressed states in a single semiconductor quantum dot. A strong laser pulse couples the exciton and biexciton states, to form an Autler-Townes doublet of the neutral exciton transition. The Rabi-splitting, and hence the admixture of the dressed states follows the envelope of the picosecond control laser. We create a superposition of dressed states, and observe the resulting beat: a direct measurement of a Rabi oscillation in time delay rather than the usual power domain

    Temperature dependent polariton emission from strongly coupled organic semiconductor microcavities

    Get PDF
    We investigated the absorption and photoluminescence (PL) of J-aggregates of a cyanine dye both in a thin film format and when used as the active layer in a strongly-coupled microcavity. We show that as temperature is reduced, the absorption linewidth of the J-aggregates narrows and shifts to higher energy. When the J-aggregate is placed in a microcavity we find that the energy of the polariton modes also shifts to higher energies as temperature is reduced. We compare the intensity of PL emission from the upper and lower branches at resonance as a function of temperature, and find that it can be described by an activation energy of 25 meV. PL emission spectra at resonance also suggest that uncoupled excitons inside the microcavity populate the upper polariton branch states
    corecore