5 research outputs found

    Automatic gross tumor segmentation of canine head and neck cancer using deep learning and cross-species transfer learning

    Get PDF
    BackgroundRadiotherapy (RT) is increasingly being used on dogs with spontaneous head and neck cancer (HNC), which account for a large percentage of veterinary patients treated with RT. Accurate definition of the gross tumor volume (GTV) is a vital part of RT planning, ensuring adequate dose coverage of the tumor while limiting the radiation dose to surrounding tissues. Currently the GTV is contoured manually in medical images, which is a time-consuming and challenging task.PurposeThe purpose of this study was to evaluate the applicability of deep learning-based automatic segmentation of the GTV in canine patients with HNC.Materials and methodsContrast-enhanced computed tomography (CT) images and corresponding manual GTV contours of 36 canine HNC patients and 197 human HNC patients were included. A 3D U-Net convolutional neural network (CNN) was trained to automatically segment the GTV in canine patients using two main approaches: (i) training models from scratch based solely on canine CT images, and (ii) using cross-species transfer learning where models were pretrained on CT images of human patients and then fine-tuned on CT images of canine patients. For the canine patients, automatic segmentations were assessed using the Dice similarity coefficient (Dice), the positive predictive value, the true positive rate, and surface distance metrics, calculated from a four-fold cross-validation strategy where each fold was used as a validation set and test set once in independent model runs.ResultsCNN models trained from scratch on canine data or by using transfer learning obtained mean test set Dice scores of 0.55 and 0.52, respectively, indicating acceptable auto-segmentations, similar to the mean Dice performances reported for CT-based automatic segmentation in human HNC studies. Automatic segmentation of nasal cavity tumors appeared particularly promising, resulting in mean test set Dice scores of 0.69 for both approaches.ConclusionIn conclusion, deep learning-based automatic segmentation of the GTV using CNN models based on canine data only or a cross-species transfer learning approach shows promise for future application in RT of canine HNC patients

    The use of bougie-guided insertion of a laryngeal mask airway device in neonatal piglets after unexpected complications

    No full text
    After marked airway obstruction with laryngeal mask (LM) placement in neonate piglets, anatomical observations in cadavers revealed a large epiglottis advancing markedly over the soft palate. CT imaging in vivo confirmed that the LM pushes the epiglottis caudally thereby obstructing the larynx. As a new approach, in 20 piglets a flexible PVC bougie placed under laryngoscopy was used to guide the LM to the correct position at the larynx. Placement of the bougie was easy and the LM was positioned successfully in all piglets at first attempt. In 14 piglets, the epiglottis was positioned dorsal to the soft palate before LM insertion and had to be pushed downwards to advance the bougie. In case of failure of LM placement with potential airway obstruction, the use of a bougie to guide the LM over the epiglottis was simple, rapid, and improved the success rate without complication

    Vertebral column deformity with curved cross-stitch vertebrae in Norwegian seawater-farmed Atlantic salmon, Salmo salar L.

    Get PDF
    Pathological changes in the vertebral column of farmed Atlantic salmon in Norway have been reported since the 1990s. Based on the characteristic radiographic findings, we here present a vertebral column deformity named “curved cross‐stitch vertebrae” that mainly affects the middle aspect of the vertebral column. Sixty fish, from the west/northwest coast of mid‐Norway, were sampled at slaughter and examined by radiography, computed tomography (CT), necropsy, macrophotography, and histology. The vertebral deformities were radiographically graded as mild, moderate, or marked. The main differences between these grades of changes were defined by increased curving of the peripheries of endplates, reduced intervertebral spaces, and vertical displacement of the vertebrae. The curved rims of endplates were located peripheral to a continuous and approximately circular borderline. The CT studies revealed small, multifocal, hypo‐attenuating, round to crescent‐shaped areas in the notochord, compatible with the presence of gas. Additionally, histology revealed that the axial parts of endplates had circular zones with perforations, through which either notochordal tissue prolapsed into the vertebrae or vascularized fibrochondroid proliferations extended from the vertebrae into the notochord. Inflammation was present in many vertebral bodies. To the best of our knowledge, this is the first report of gas in the notochord of fish.publishedVersio

    Vertebral column deformity with curved cross-stitch vertebrae in Norwegian seawater-farmed Atlantic salmon, Salmo salar L.

    Get PDF
    Pathological changes in the vertebral column of farmed Atlantic salmon in Norway have been reported since the 1990s. Based on the characteristic radiographic findings, we here present a vertebral column deformity named “curved cross‐stitch vertebrae” that mainly affects the middle aspect of the vertebral column. Sixty fish, from the west/northwest coast of mid‐Norway, were sampled at slaughter and examined by radiography, computed tomography (CT), necropsy, macrophotography, and histology. The vertebral deformities were radiographically graded as mild, moderate, or marked. The main differences between these grades of changes were defined by increased curving of the peripheries of endplates, reduced intervertebral spaces, and vertical displacement of the vertebrae. The curved rims of endplates were located peripheral to a continuous and approximately circular borderline. The CT studies revealed small, multifocal, hypo‐attenuating, round to crescent‐shaped areas in the notochord, compatible with the presence of gas. Additionally, histology revealed that the axial parts of endplates had circular zones with perforations, through which either notochordal tissue prolapsed into the vertebrae or vascularized fibrochondroid proliferations extended from the vertebrae into the notochord. Inflammation was present in many vertebral bodies. To the best of our knowledge, this is the first report of gas in the notochord of fish
    corecore