5 research outputs found

    Adsorption of sodium hexanoate on α-alumina.

    Get PDF
    Neutron reflection and adsorption isotherm measurements have been used to study the adsorption behaviour of hexanoic acid onto α-alumina surfaces. Importantly, the pH dependence of the behaviour has been characterised with a pronounced maximum in adsorption identified at a pH of approximately 5, close to the pKa of the acid. The adsorbed layer is identified as a bilayer, which is reasonable given the hydrophilic nature of both side of the layer, and has a thickness of 13 Å, suggesting significant extent of interdigitation. At pH 5, the layer has much lower extent of hydration relative to the higher pH of 7, consistent with the increased total adsorption at pH 5. A number of different mechanisms for the binding of the hexanoic acid to the surface are considered. The experimental data, combined with calculations using equilibrium/binding constants of the surface and ligands, indicates that a ligand exchange reaction may be the most significant mechanism.This is the author's accepted manuscript. The final version has been published by Elsevier in the Journal of Colloid and Interface Science here: http://www.sciencedirect.com/science/article/pii/S0021979713005560

    Enhanced Structural Control of Soft-Templated Mesoporous Inorganic Thin Films by Inert Processing Conditions

    Get PDF
    Mesoporous thin films are widely used for applications in need of high surface area and efficient mass and charge transport properties. A well-established fabrication process involves the supramolecular assembly of organic molecules (e.g., block copolymers and surfactants) with inorganic materials obtained by sol-gel chemistry. Typically, subsequent calcination in air removes the organic template and reveals the porous inorganic network. A significant challenge for such coatings is the anisotropic shrinkage due to the volume contraction related to solvent evaporation, inorganic condensation, and template removal, affecting the final porosity as well as pore shape, size, arrangement, and accessibility. Here, we show that a two-step calcination process, composed of high-temperature treatment in argon followed by air calcination, is an effective fabrication strategy to reduce film contraction and enhance structural control of mesoporous thin films. Crucially, the formation of a transient carbonaceous scaffold enables the inorganic matrix to fully condense before template removal. The resulting mesoporous films retain a higher porosity as well as bigger pores with extended porous order. Such films present favorable characteristics for mass transport of large molecules. This is demonstrated for lysozyme adsorption into the mesoporous thin films as an example of enzyme storage

    Bulk phase behavior vs interface adsorption: Specific multivalent cation and anion effects on BSA interactions

    No full text
    Proteins are ubiquitous and play a critical role in many areas from living organisms to protein microchips. In humans, serum albumin has a prominent role in the foreign body response since it is the first protein which will interact with, e.g., an implant or stent. In this study, we focused on the influence of salts (i.e., different cations (Y3+, La3+) and anions (Cl–, I–) on bovine serum albumin (BSA) in terms of its bulk behavior as well as the role of charges for protein adsorption at the solid–liquid interface in order to understand and control the underlying molecular mechanisms and interactions. This is part of our group’s effort to gain a deeper understanding of protein–protein and protein–surface interactions in the presence of multivalent ions. In the bulk, we established two new phase diagrams and found not only multivalent cation-triggered phase transitions, but also a dependence of the protein behavior on the type of anion. The attractive interactions between proteins were observed to increase from Cl– < NO3– < I–, resulting in iodide preventing re-entrant condensation and promoting liquid–liquid phase separation in bulk. Using ellipsometry and a quartz-crystal microbalance with dissipation (QCM-D), we obtained insight into the growth of the protein adsorption layer. Importantly, we found that phase transitions at the substrate can be triggered by certain interface properties, whether they exist in the bulk solution or not. Through the use of a hydrophilic, negatively charged surface (native silica), the direct binding of anions to the interface was prevented. Interestingly, this led to re-entrant adsorption even in the absence of re-entrant condensation in bulk. However, the overall amount of adsorbed protein was enhanced through stronger attractive protein–protein interactions in the presence of iodide salts. These findings illustrate how carefully chosen surface properties and salts can directly steer the binding of anions and cations, which guide protein behavior, thus paving the way for specific/triggered protein–protein, protein–salt, and protein–surface interactions

    Enhanced protein adsorption upon bulk phase separation

    No full text
    In all areas related to protein adsorption, from medicine to biotechnology to heterogeneous nucleation, the question about its dominant forces and control arises. In this study, we used ellipsometry and quartz-crystal microbalance with dissipation (QCM-D), as well as density-functional theory (DFT) to obtain insight into the mechanism behind a wetting transition of a protein solution. We established that using multivalent ions in a net negatively charged globular protein solution (BSA) can either cause simple adsorption on a negatively charged interface, or a (diverging) wetting layer when approaching liquid-liquid phase separation (LLPS) by changing protein concentration (cp) or temperature (T). We observed that the water to protein ratio in the wetting layer is substantially larger compared to simple adsorption. In the corresponding theoretical model, we treated the proteins as limited-valence (patchy) particles and identified a wetting transition for this complex system. This wetting is driven by a bulk instability introduced by metastable LLPS exposed to an ion-activated attractive substrate

    Research data supporting the publication "Effect of Anionic Lipids on Mammalian Plasma Cell Membrane Properties"

    No full text
    This dataset contains the data for the results in this publication on mixed phosphatidylethanolamine/phosphatidylserine bilayers supported on Au(111) electrodes and monolayers at the air/water interface. The measurements included: pressure-area isotherm data, electrochemical data on supported bilayers, in situ infrared spectroscopy (PM-IRRAS) data on supported bilayers, Brewster Angle Microscopy, Grazing Incidence X-ray Diffraction, X-ray Reflectivity and Neutron Reflectivity data on monolayers
    corecore