7 research outputs found

    ЕЛЕКТРООСАДЖЕННЯ МІДІ ІЗ МЕТАНСУЛЬФОНАТНОГО ЕЛЕКТРОЛІТУ

    No full text
    The dependences of the electrical conductivity of the methanesulfonate copper plating electrolyte on the concentrations of acid and copper methanesulfonate have been established. It has been shown that an electrolyte with a composition of 0.6 M Cu (CH3SO3)2 + 0.6 M CH3SO3Н is characterized by maximum copper ion concentration and high electrical conductivity.  The study of the morphology of the copper coatings obtained in different hydrodynamic modes showed that smooth fine-grained deposits, well adhered to the base can be obtained from  stirred methanesulfonate electrolyte in a range of current densities of 1 to 7 A/dm2. High-quality deposits from a quiescent electrolyte are obtained at current densities below 3 A/dm2.X-ray analysis of copper coatings deposited from a methanesulfonate electrolyte showed that their structure corresponds to a face-centred cubic lattice. The deposit crystallite sizes decrease with increasing the current density. The dependence of the dislocation density on the current density is antibate. Stirring of the electrolyte mitigates the impact of current density on the parameters of the structure of coating , which changes are significantly reduced. It has been shown that stirring the electrolyte affects the structurally dependent properties of the copper coatings, such as internal stress and micro hardness. Along with the diminishing crystallite sizes, an increase in the internal stress and micro hardness of the coatings is observed. Stirring, along with the expansion of the range of coating current densities can reduce the internal stress of the ones. This is an important factor for obtaining thick layers of copper.Установлены зависимости электропроводности метансульфонатного электролита меднения от концентрации кислоты и метансульфоната меди. Показано, что электролит максимально концентрированный по ионам меди, характеризующийся высокой электропроводностью, соответствует составу 0.6 М Cu(СН3SO3)2 + 0.6 M СН3SO3Н. Исследование морфологии медных покрытий, полученных в разных гидродинамических режимах, показало, что при перемешивании метансульфонатного электролита можно получить гладкие мелкокристаллические осадки, хорошо сцепленные с основой в диапазоне плотностей тока 1–7 А/дм2. Качественные осадки из покоящегося электролита получаются при плотности тока ниже 3 А/дм2. Рентгеновский анализ медных покрытий, осажденных из метансульфонатного электролита, показал, что их структура соответствует гранецентрированной кубической решетке. Размер кристаллитов осадков снижается  при увеличении плотности тока. Зависимость плотности дислокаций от плотности тока антибатная. Перемешивание электролита сглаживает влияние плотности тока на параметры структуры покрытий, изменения которых значительно уменьшаются. Показано, что перемешивание электролита влияет на структурно-зависимые свойства медных покрытий внутренние напряжения и микротвердость. Вместе с измельчением кристаллитов происходит повышение внутренних напряжений и микротвердости покрытий. Использование перемешивания, наряду с расширением диапазона плотностей тока осаждения покрытий, позволяет снизить их внутренние напряжения. Это важный фактор при получении толстых слоев меди.Встановлено залежності електропровідності метансульфонатного електроліту міднення від концентрації кислоти і метансульфонату міді. Показано, що електроліт з максимальною концентрацією іонів міді, який характеризується високою електропровідністю, відповідає складу 0,6 М Cu(СН3SO3)2 + 0,6 M СН3SO3Н. Дослідження морфології мідних покривів, які було осаджено в різних гідродинамічних режимах, показало, що при перемішуванні метансульфонатного електроліту можна отримати гладенькі, дрібнокристалічні осади добре зчеплені з основою в діапазоні густин струму 1–7 А/дм2. Без перемішування якісні осади отримано при густині струму нижче 3 А/дм2. Рентгенівський аналіз мідних покривів, осаджених із метансульфонатного електроліту, показав, що їх структура відповідає гранецентрованій кубічній гратці. Розмір кристалітів осадів зменшується при збільшенні густини струму. Залежність густини дислокацій від густини струму антибатна. Перемішування електроліту згладжує вплив густини струму на параметри структури покривів, зміни яких значно зменшуються. Показано, що перемішування електроліту впливає на структурно-залежні властивості мідних покривів, такі як внутрішні напруження і мікротвердість. Разом з подрібненням кристалітів відбувається підвищення внутрішніх напружень і мікротвердості покривів. Використання перемішування, поряд з розширенням діапазону густин струму осадження покривів, дозволяє знизити їх внутрішні напруження. Це важливий фактор при отриманні товстих шарів міді

    Research Into Composition and Properties of the Ni–Fe Electrolytic Alloy

    Full text link
    Promising yet insufficiently studied is the new electrolyte based on methanesulfonate salts of the alloy-forming metals. Examining the laws that govern the electrodeposition of the Ni–Fe alloy with assigned physical-chemiсal properties from the methanesulfonate electrolyte is a relevant task. In the present work we established influence of the concentration of iron(ІІ) ions in the electrolyte and of current density on the composition of alloy. The content of iron in the Ni–Fe alloy grows with an increase in the concentration of iron(ІІ) ions in the methanesulfonate electrolyte. Dependence of the content of iron in the alloy on current density is of extreme character. The maximum corresponds to the current density of 1 A/dm2. It is shown that the organic additive applied in the present work, sodium saccharinate, does not exert any substantial influence on the composition of alloy at current density exceeding 2 A/dm2. Sodium saccharinate increases microhardness of the coating with the Ni–Fe alloy whose values reach 500 kg/cm2. When introducing into the methanesulfonate deposition electrolyte of the Ni–Fe alloy of 6 mmol/l of sodium saccharinate, practically unstressed precipitations precipitate. A reduction in the internal stresses leads to a decrease in the values of coercive force of the alloy. It is demonstrated that the investigated properties of the Ni–Fe precipitations are determined by the structure of coatings. Sodium saccharinate, being a surface-active compound under the conditions of electrolysis, changes the structure of the cathodic Ni–Fe alloy and improves functional characteristics of coatings. The established dependences represent a rather valuable basis for designing new technologies of the electrodeposition of polyfunctional coatings with the Ni–Fe alloy with enhanced mechanical and magnetic characteristic

    Research Into Corrosion and Electrocatalytic Properties of the Modified Oxide Films on Tin

    Full text link
    Oxide films on tin, modified by titanium compounds, are non­toxic and serve as anticorrosion protection, material for gas sensors, photo­ and electrocatalysts. We investigated the process of anodic tin treatment in the presence of potassium metatitanate. It is shown that the two­stage technique for the formation of an oxide film at the electrode potentials of −0.3 V and 3.0 V makes it possible to substantially increase the content of titanium oxide compounds in the oxide mixture. The content of Ti(IV) reaches values of 14−15 % (mol). Films with a maximum content of titanium compounds and the largest corrosion resistance are formed at a concentration of potassium metatitanate above 1·10–3 mol/l. The time of self­activation of such films is 10 times longer than that of the unmodified films. We explored catalytic properties of the obtained films with mixed composition SnОх(TiОу). It is shown that an increase in the content of titanium oxide compounds in the film contributes to the acceleration of anodic oxidation of MTBE. It was established that this process takes place directly on the surface of the oxide film rather than during interaction with oxygen formed on the anode. The modified oxide films SnОх(TiОу) on tin with maximal corrosion resistance and electrocatalytic activity are formed from the solutions that contain 0.5M KOH

    Research Into Effect of Propionic and Acrylic Acids on the Electrodeposition of Nickel

    Full text link
    Nickel coatings are widely used in machine-building, electronics, automotive and aerospace industries. High requirements for environmental safety and operational performance of contemporary processes of electrochemical nickel plating predetermine the search for the new electrolytes. Electrolytes based on carboxylic acids are characterized by high buffer properties, ecological safety, and enhanced values of limiting current. Heuristic approach when fabricating comprehensive electrolytes, based on empirical data, does not make it possible to conduct predictable optimization of the formulations of nickel plating electrolytes. Solving this problem seems possible when using a quantum-chemical simulation. In this work, we performed quantum-chemical calculations for the propionate and acrylate complexes of nickel. It was established that coordination numbers of the propionate and acrylate complexes of nickel are equal to five and six, respectively. It is shown that electroreduction of the propionate nickel complex proceeds with the formation of an intermediate particle. The negative charge of this particle is localized on the intrasphere molecules of water. This may lead to the electroreduction of the latter and to an increase in the pH of a near-electrode layer. In the intermediate particle of the acrylate complex, localization of the charge occurs on the vinyl fragment of acrylate-ion. Electrochemical reaction of reduction of the coordinated water molecules in such a particle is not energetically favorable. It was established that the isolation of nickel from the acrylate complex proceeds with lower kinetic difficulties than from the propionate complex. An assumption was made that fewer insoluble hydroxide nickel compounds, which block the cathode surface, form in the acrylate electrolyte.Such an assumption is based on the fact that given close buffer properties of acids, electroreduction of the acrylate complexes does not imply the involvement of coordinated water molecules in the electrode process. The results obtained are very valuable for selecting the nature of carboxylic acid as a component for the complex nickel plating electrolyt
    corecore