24 research outputs found

    Radio Identity Verification-based IoT Security Using RF-DNA Fingerprints and SVM

    Get PDF
    It is estimated that the number of Internet of Things (IoT) devices will reach 75 billion in the next five years. Most of those currently and soon-to-be deployed devices lack sufficient security to protect themselves and their networks from attacks by malicious IoT devices masquerading as authorized devices in order to circumvent digital authentication approaches. This work presents a Physical (PHY) layer IoT authentication approach capable of addressing this critical security need through the use of feature-reduced, Radio Frequency-Distinct Native Attributes (RF-DNA) fingerprints and Support Vector Machines (SVM). This work successfully demonstrates (i) authorized Identity (ID) verification across three trials of six randomly chosen radios at signal-to-noise ratios greater than or equal to 6 dB and (ii) rejection of all rogue radio ID spoofing attacks at signal-to-noise ratios greater than or equal to 3 dB using RF-DNA fingerprints whose features are selected using the Relief-F algorithm

    Towards Blood Flow in the Virtual Human: Efficient Self-Coupling of HemeLB

    Get PDF
    Many scientific and medical researchers are working towards the creation of a virtual human - a personalised digital copy of an individual - that will assist in a patient's diagnosis, treatment and recovery. The complex nature of living systems means that the development of this remains a major challenge. We describe progress in enabling the HemeLB lattice Boltzmann code to simulate 3D macroscopic blood flow on a full human scale. Significant developments in memory management and load balancing allow near linear scaling performance of the code on hundreds of thousands of computer cores. Integral to the construction of a virtual human, we also outline the implementation of a self-coupling strategy for HemeLB. This allows simultaneous simulation of arterial and venous vascular trees based on human-specific geometries.Comment: 30 pages, 10 figures, To be published in Interface Focus (https://royalsocietypublishing.org/journal/rsfs

    The Context of Current Content Analysis of Gender Roles: An Introduction to a Special Issue

    Get PDF
    The aim of this paper is to provide context for the quantitative content analyses of gender roles that are to be included in both parts of this special issue. First, a timeline of historical uses of the content analysis methodology is presented. Second, research objectives that frequently drive content analysis of gender roles are described; these include: to support feminist claims, to compare media with real life, to predict effects on audiences, and to detect effects of media producers on content. Third, previous content analyses published in Sex Roles and other gender-focused journals are reviewed and categorized in terms of medium, genre, time span, gender, and nationality. Finally, contributions of each of the articles in this special issue are outlined

    MPI-2: Extending the message-passing interface

    No full text
    This paper describes current activities of the MPI-2 Forum. The MPI - 2 Forum is a group of parallel computer vendors, library writers, and application specialists working together to define a set of extensions to MPI (Message Passing Interface). MPI was defined by the same process and now has many implementations, both vendor- proprietary and publicly available, for a wide variety of parallel computing environments. In this paper we present the salient aspects of the evolving MPI-2 document as it now stands. We discuss proposed extensions and enhancements to MPI in the areas of dynamic process management, one-sided operations, collective operations, new language binding, real-time computing, external interfaces, and miscellaneous topics

    Towards Blood Flow in the Virtual Human: Efficient Self-Coupling of HemeLB

    Get PDF
    Many scientific and medical researchers are working towards the creation of a virtual human—a personalized digital copy of an individual—that will assist in a patient’s diagnosis, treatment and recovery. The complex nature of living systems means that the development of this remains a major challenge. We describe progress in enabling the HemeLB lattice Boltzmann code to simulate 3D macroscopic blood flow on a full human scale. Significant developments in memory management and load balancing allow near linear scaling performance of the code on hundreds of thousands of computer cores. Integral to the construction of a virtual human, we also outline the implementation of a self-coupling strategy for HemeLB. This allows simultaneous simulation of arterial and venous vascular trees based on human-specific geometries

    Towards blood flow in the virtual human: efficient self-coupling of HemeLB

    No full text
    Many scientific and medical researchers areworking towards the creation of avirtual human—a personalized digital copy of an individual—that will assistin a patient’s diagnosis, treatment and recovery. The complex nature of livingsystems means that the development of this remains a major challenge. Wedescribe progress in enabling the HemeLB lattice Boltzmann code to simulate3D macroscopic blood flowon a full human scale. Significant developments inmemory management and load balancing allow near linear scaling performanceof the code on hundreds of thousands of computer cores. Integral tothe construction of a virtual human, we also outline the implementation of aself-coupling strategy for HemeLB. This allows simultaneous simulation ofarterial and venous vascular trees based on human-specific geometries
    corecore