2 research outputs found

    A postmortem study suggests a revision of the dual-hit hypothesis of Parkinson's disease

    Get PDF
    The dual-hit hypothesis of Parkinson's disease (PD) originally postulated that a neurotropic pathogen leads to formation of alpha-synuclein pathology in the olfactory bulb (OB) and dorsal motor nucleus of the vagus (DMV) and then invades the brain from these two entry points. Little work has been conducted to validate an important underlying premise for the dual-hit hypothesis, namely that the initial Lewy pathology does arise simultaneously in the OB and the enteric nervous system (ENS) plexuses and DMV at the earliest disease stage. We conducted a focused re-analysis of two postmortem datasets, which included large numbers of mild Lewy body disease (LBD) cases. We found that cases with alpha-synuclein pathology restricted to the peripheral autonomic nervous system and/or lower brainstem (early body-first LBD cases) very rarely had any OB pathology, suggesting that Lewy pathology commonly arises in the ENS without concomitant involvement of the OB. In contrast, cases with mild amygdala-predominant Lewy pathology (early brain-first LBD cases) nearly always showed OB pathology. This is compatible with the first pathology being triggered in the OB or amygdala followed by secondary spreading to connected structures, but without early involvement of the ENS or lower brainstem. These observations support that the pathologic process starts in either the olfactory bulb or the ENS, but rarely in the olfactory bulb and gut simultaneously. More studies on neuropathological datasets are warranted to reproduce these findings. The agreement between the revised single-hit hypothesis and the recently proposed brain-first vs. body-first model of LBD is discussed.Peer reviewe

    Preserved noradrenergic function in Parkinson's disease patients with rest tremor

    No full text
    Noradrenergic neurotransmission may play an important role in tremor modulation through its innervation of key structures of the central tremor circuits. Here, Parkinson's disease (PD) patients with (PDT+) or without (PDT-) rest tremor had C-11-methylreboxetine(C-11-MeNER) positron emission tomography (PET) to test the hypothesis that noradrenaline terminal function was relatively preserved in PDT+ compared to PDT-. Methods: Sixty-five PD patients and 28 healthy controls (HC) were scanned with C-11-MeNER PET. Patients were categorized as PDT+ if subscores in UPDRS-III item 3 or MDS-UPDRS-III item 17 was >= 2; remaining were categorized as PDT-. Simplified reference tissue model 2 distribution volume ratios (DVR) for C-11-MeNER were calculated for thalamus, dorsal and median raphe, locus coeruleus (LC) and red nucleus using time activity curves (TACs) obtained from volumes of interest (VOI). Data were statistically interrogated with a general linear mixed model using 'region', and 'group' as factors and the interaction of 'region x group' was examined. Results: Tremor positive PD patients had a significantly higher mean C-11-MeNER DVR compared to PDT- in LC and thalamus. The PDT+ mean LC DVR was similar to that of HC. PDT+ mean C-11-MeNER DVRs were significantly lower than HC in the dorsal raphe while the PDT- group showed significantly lower mean C-11-MeNER DVR across all regions compared to HC. Conclusion: While both PD (T+) and PD (T-) groups showed a significant loss of noradrenaline terminal function compared to controls, noradrenergic neurons were relatively preserved in PDT+ in LC and thalamus. The greater loss of noradrenergic transporters in PDT- in LC and thalamus compared with PDT+ is in line with earlier in-vitro studies and could potentially contribute to their tremor negative phenotype
    corecore