38 research outputs found

    Effective equations for isotropic quantum cosmology including matter

    Full text link
    Effective equations often provide powerful tools to develop a systematic understanding of detailed properties of a quantum system. This is especially helpful in quantum cosmology where several conceptual and technical difficulties associated with the full quantum equations can be avoided in this way. Here, effective equations for Wheeler-DeWitt and loop quantizations of spatially flat, isotropic cosmological models sourced by a massive or interacting scalar are derived and studied. The resulting systems are remarkably different from that given for a free, massless scalar. This has implications for the coherence of evolving states and the realization of a bounce in loop quantum cosmology.Comment: 42 page

    Effective Equations of Motion for Quantum Systems

    Full text link
    In many situations, one can approximate the behavior of a quantum system, i.e. a wave function subject to a partial differential equation, by effective classical equations which are ordinary differential equations. A general method and geometrical picture is developed and shown to agree with effective action results, commonly derived through path integration, for perturbations around a harmonic oscillator ground state. The same methods are used to describe dynamical coherent states, which in turn provide means to compute quantum corrections to the symplectic structure of an effective system.Comment: 31 pages; v2: a new example, new reference

    Quantum Gravity and Higher Curvature Actions

    Get PDF
    Effective equations are often useful to extract physical information from quantum theories without having to face all technical and conceptual difficulties. One can then describe aspects of the quantum system by equations of classical type, which correct the classical equations by modified coefficients and higher derivative terms. In gravity, for instance, one expects terms with higher powers of curvature. Such higher derivative formulations are discussed here with an emphasis on the role of degrees of freedom and on differences between Lagrangian and Hamiltonian treatments. A general scheme is then provided which allows one to compute effective equations perturbatively in a Hamiltonian formalism. Here, one can expand effective equations around any quantum state and not just a perturbative vacuum. This is particularly useful in situations of quantum gravity or cosmology where perturbations only around vacuum states would be too restrictive. The discussion also demonstrates the number of free parameters expected in effective equations, used to determine the physical situation being approximated, as well as the role of classical symmetries such as Lorentz transformation properties in effective equations. An appendix collects information on effective correction terms expected from loop quantum gravity and string theory.Comment: 28 pages, based on a lecture course at the 42nd Karpacz Winter School of Theoretical Physics ``Current Mathematical Topics in Gravitation and Cosmology,'' Ladek, Poland, February 6-11, 200

    Coordinate time dependence in Quantum Gravity

    Get PDF
    The intuitive classical space-time picture breaks down in quantum gravity, which makes a comparison and the development of semiclassical techniques quite complicated. Using ingredients of the group averaging method to solve constraints one can nevertheless introduce a classical coordinate time into the quantum theory, and use it to investigate the way a semiclassical continuous description emerges from discrete quantum evolution. Applying this technique to test effective classical equations of loop cosmology and their implications for inflation and bounces, we show that the effective semiclassical theory is in good agreement with the quantum description even at short scales.Comment: 35 pages, 17 figure. Revised version. To appear in Phys. Rev.

    Effective constraints of loop quantum gravity

    Get PDF
    Within a perturbative cosmological regime of loop quantum gravity corrections to effective constraints are computed. This takes into account all inhomogeneous degrees of freedom relevant for scalar metric modes around flat space and results in explicit expressions for modified coefficients and of higher order terms. It also illustrates the role of different scales determining the relative magnitude of corrections. Our results demonstrate that loop quantum gravity has the correct classical limit, at least in its sector of cosmological perturbations around flat space, in the sense of perturbative effective theory.Comment: 44 pages, 6 figure

    Effective Constraints for Quantum Systems

    Full text link
    An effective formalism for quantum constrained systems is presented which allows manageable derivations of solutions and observables, including a treatment of physical reality conditions without requiring full knowledge of the physical inner product. Instead of a state equation from a constraint operator, an infinite system of constraint functions on the quantum phase space of expectation values and moments of states is used. The examples of linear constraints as well as the free non-relativistic particle in parameterized form illustrate how standard problems of constrained systems can be dealt with in this framework.Comment: 40 page

    Singularities in Isotropic Non-Minimal Scalar Field Models

    Get PDF
    Non-minimally coupling a scalar field to gravity introduces an additional curvature term into the action which can change the general behavior in strong curvature regimes, in particular close to classical singularities. While one can conformally transform any non-minimal model to a minimally coupled one, that transformation can itself become singular. It is thus not guaranteed that all qualitative properties are shared by minimal and non-minimal models. This paper addresses the classical singularity issue in isotropic models and extends singularity removal in quantum gravity to non-minimal models.Comment: 12 page

    Optimization of the Touchscreen-Based Visuomotor Conditional Learning Task in Mice

    Get PDF
    The translational gap between animal models and clinical trials is a longstanding, yet largely unresolved, limitation in the study of cognition. This discrepancy is largely due to the differences in how cognition is assessed in animal models compared to those in clinical populations. In the stimulus-response (S-R) learning literature, for example, the techniques used to assess the acquisition of habitual behaviour differ greatly across species, leading to poor cross-species translation and often conflicting results. As a result, we set out to optimize a S-R learning task in mice using the touchscreen-based operant technologies. Similar to human studies, this touchscreen technique encourages animals to respond to visual stimuli displayed on a touchscreen according to a specific rule. Allowing for very similar, if not identical, cognitive assays in mice and men, this technique promotes high translational potential and a high degree of standardisation. Originally developed for rats, the Visuomotor Conditional Learning (VMCL) task encourages animals to learn arbitrary associations between visual stimuli and motor responses. In naĂŻve C57BL/6 mice, we sought to optimize VMCL task parameters to promote better and more efficient responding, identifying the length of inter-trial intervals and the limited hold period as two potential candidates. The validation of this task will provide a novel means through which to study the neural correlates of S-R learning, and its use in conjunction with fiber photometry recordings may be provided

    Formation and Evolution of Structure in Loop Cosmology

    Get PDF
    Inhomogeneous cosmological perturbation equations are derived in loop quantum gravity, taking into account corrections in particular in gravitational parts. This provides a framework for calculating the evolution of modes in structure formation scenarios related to inflationary or bouncing models. Applications here are corrections to the Newton potential and to the evolution of large scale modes which imply non-conservation of curvature perturbations possibly noticeable in a running spectral index. These effects are sensitive to quantization procedures and test the characteristic behavior of correction terms derived from quantum gravity.Comment: 4 page

    Cosmological vector modes and quantum gravity effects

    Full text link
    In contrast to scalar and tensor modes, vector modes of linear perturbations around an expanding Friedmann--Robertson--Walker universe decay. This makes them largely irrelevant for late time cosmology, assuming that all modes started out at a similar magnitude at some early stage. By now, however, bouncing models are frequently considered which exhibit a collapsing phase. Before this phase reaches a minimum size and re-expands, vector modes grow. Such modes are thus relevant for the bounce and may even signal the breakdown of perturbation theory if the growth is too strong. Here, a gauge invariant formulation of vector mode perturbations in Hamiltonian cosmology is presented. This lays out a framework for studying possible canonical quantum gravity effects, such as those of loop quantum gravity, at an effective level. As an explicit example, typical quantum corrections, namely those coming from inverse densitized triad components and holonomies, are shown to increase the growth rate of vector perturbations in the contracting phase, but only slightly. Effects at the bounce of the background geometry can, however, be much stronger.Comment: 20 page
    corecore