13,030 research outputs found

    A model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    Full text link
    Electric double layer supercapacitors are promising devices for high-power energy storage based on the reversible absorption of ions into porous, conducting electrodes. Graphene is a particularly good candidate for the electrode material in supercapacitors due to its high conductivity and large surface area. In this paper we consider supercapacitor electrodes made from a stack of graphene sheets with randomly-inserted "spacer" molecules. We show that the large volumetric capacitances C > 100 F/cm^3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.Comment: 13 pages, 5 figures; additional discussion and supporting calculations adde

    SATELLITE DNA'S IN THE CRABS Gecarcinus lateralis AND Cancer pagurus

    Full text link

    Populations of Pear Thrips, \u3ci\u3eTaeniothrips Inconsequens\u3c/i\u3e (Thysanoptera: Thripidae) in Sugar Maple Stands in Vermont: 1989-2005

    Get PDF
    Development of an effective IPM strategy for pear thrips, Taeniothrips inconsequens (Uzel) (Thysanoptera: Thripidae), a pest of sugar maple, Acer saccharum Marshall, demands an understanding of their population fluctuations over time. Pear thrips populations were monitored using a standardized soil sampling method every fall from 1989 – 2005 in 14 counties of Vermont (U.S.). Data from individual sites were combined into north, central and south regions. High numbers of thrips emerged from soil sampled in 1989, 1990, 1993 and 2001, particularly in the north region (Washington, Lamoille, and Franklin counties). The central and south regions had lower pear thrips populations over all years. These results provide, for the first time, fundamental knowledge of pear thrips populations across a wide geographical area of Vermont and will assist in the design of suitable control strategies for pear thrips in the future

    Anomalously large capacitance of a plane capacitor with a two-dimensional electron gas

    Full text link
    In electronic devices where a two-dimensional electron gas (2DEG) comprises one or both sides of a plane capacitor, the resulting capacitance CC can be larger than the "geometric capacitance" CgC_g determined by the physical separation dd between electrodes. This larger capacitance is known to result from the Coulomb correlations between individual electrons within the low density 2DEG, which lead to a negative thermodynamic density of states (negative compressibility). Experiments on such systems generally operate in the regime where the average spacing between electrons n1/2n^{-1/2} in the 2DEG is smaller than dd, and these experiments observe C>CgC > C_g by only a few percent. A recent experiment [1], however, has observed CC larger than CgC_g by almost 40% while operating in the regime nd2<<1nd^2 << 1. In this paper we argue that at nd2<<1nd^2 << 1 correlations between the electronic charge of opposite electrodes become important. We develop a theory of the capacitance for the full range of nd2nd^2. We show that, in the absence of disorder, the capacitance can be 4d/a4d/a times larger than the geometric value, where a<<da << d is the electron Bohr radius. Our results compare favorably with the experiment of Ref. [1] without the use of adjustable parameters.Comment: 8 pages, 6 figures; revised discussion of the zero density limit; some typos fixe

    Provenance and geochemistry of exotic clasts in conglomerates of the Oligocene Torehina Formation, Coromandel Peninsula, New Zealand

    Get PDF
    Non-marine pebble to cobble conglomerates of the lower Torehina Formation (Oligocene) crop out along western Coromandel Peninsula and overlie, with strong angular discordance, continental-margin metasedimentary rocks (Manaia Hill Group) of Mesozoic (Late Jurassic to ?Early Cretaceous) age. The conglomerates contain provenance information that identifies a pre-Oligocene depositional history obscured by the unconformable juxtaposition of these Tertiary and Mesozoic strata. Most clasts in the lower Torehina Formation are visually similar to local bedrock lithologies, including metamorphosed sandstones and argillites, but are kaolinitic and contain more detrital and authigenic chert, quartz, and potash feldspar. Local derivation of these clasts seems unlikely. By comparing geochemical ratios with those defined for continental margin sandstones, and well characterised New Zealand tectonic terranes, we interpret the majority of clasts in the lower Torehina Formation to have been derived from a dissected orogen, with mixtures of felsic and volcanogenic-derived sediment. The most likely sources are the Waipapa and Torlesse Terranes. The remaining 20–30% of the clasts in the lower Torehina Formation were originally friable, are coarse grained, and appear to be lithologically exotic relative to known metamorphosed sandstones in basement terrane sources on North Island. Some clasts contain coal laminae and particles, and all contain detrital kaolinite as lithic fragments and matrix. Such characteristics imply a non-marine to marginal-marine source containing sediment derived from strongly weathered granite or granodiorite. Mechanical fragility implies a likely proximal, easily erodible source. We propose that this group of clasts was derived from an Upper Cretaceous sedimentary cover, either part of a locally developed basin fill or part of a once regionally extensive cover on North Island. Either case defines a more widely distributed Cretaceous source than found today

    Effect of thermal exposure, forming, and welding on high-temperature, dispersion-strengthened aluminum alloy: Al-8Fe-1V-2Si

    Get PDF
    The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated

    Early catecholamine dose as a predictor of outcome among patients in a multidisciplinary intensive care unit

    Get PDF
    Background. Vasoactive and/or inotropic agents are used in the management of patients with circulatory shock. It is a clinical perception that mortality in critically ill patients increases with increasing doses of inotropes and/or vasopressors; however, the clinical significance of catecholamine doses early in the management of critically ill patients has not been investigated well, especially in the South African (SA) context. Arbitrary ‘maximum’ doses of catecholamine therapy are used that are not evidence based. This study will help clinicians by either showing that there is no clear cut-off beyond which survival is unlikely or by identifying a dose of inotropic support above which survival is unlikely. This article provides clinicians with an evidence base against which to direct their therapy.Objectives. To describe the inotropic prescribing practices in a heterogeneous population of shocked critically ill patients in a tertiary intensive care unit (ICU) in SA, establish an association between inotropic dose and outcome and ascertain the nature of this association.Methods. This was a retrospective observational study of 189 patients admitted to a multidisciplinary academic ICU. The admission, 24-hour and maximum inotrope doses were collected and analysed, and these and other biochemical and clinical parameters were evaluated as predictors of mortality.Results. A total of 189 patients met the study inclusion criteria. The overwhelming majority of patients (99%) received adrenaline, with only 7% of those requiring inotropes receiving noradrenaline. Median inotrope dose at admission, 24-hour dose and maximum dose in the first 24 hours were all significantly higher in non-survivors than survivors. ICU mortality increased with increasing inotrope dose, and an inotrope dose ≥60 μg/min on admission was associated with an ICU mortality of 89%, with the same cut-off at 24 hours being associated with a mortality of 89%. Survivors at doses &gt;80 μg/min were only noted among trauma patients.Conclusions. High early inotrope doses are associated with increasing ICU mortality. The findings highlight the need for further research on the clinical use of inotrope dose in risk stratification in the critical care environment. The current results call into question the routine provision of high-dose inotropic support in non-trauma patients

    K-shell x-ray spectroscopy of atomic nitrogen

    Full text link
    Absolute {\it K}-shell photoionization cross sections for atomic nitrogen have been obtained from both experiment and state-of-the-art theoretical techniques. Due to the difficulty of creating a target of neutral atomic nitrogen, no high-resolution {\it K}-edge spectroscopy measurements have been reported for this important atom. Interplay between theory and experiment enabled identification and characterization of the strong 1s1s \rightarrow npnp resonance features throughout the threshold region. An experimental value of 409.64 ±\pm 0.02 eV was determined for the {\it K}-shell binding energy.Comment: 4 pages, 2 graphs, 1 tabl
    corecore