10,285 research outputs found
The effect of adding clays to mixed cultures of Streptomyces albidoflavus and Fusarium culmorum
RESP-357
A Method for Distinguishing Between Viable Spores and Mycelial Fragments of Actinomycetes in Soils
RESP-294
A Rich Population of X-ray Emitting Wolf-Rayet Stars in the Galactic Starburst Cluster Westerlund 1
Recent optical and IR studies have revealed that the heavily-reddened
starburst cluster Westerlund 1 (Wd 1) contains at least 22 Wolf-Rayet (WR)
stars, comprising the richest WR population of any galactic cluster. We present
results of a senstive Chandra X-ray observation of Wd 1 which detected 12 of
the 22 known WR stars and the mysterious emission line star W9. The fraction of
detected WN stars is nearly identical to that of WC stars. The WN stars WR-A
and WR-B as well as W9 are exceptionally luminous in X-rays and have similar
hard heavily-absorbed spectra with strong Si XIII and S XV emission lines. The
luminous high-temperature X-ray emission of these three stars is characteristic
of colliding wind binary systems but their binary status remains to be
determined. Spectral fits of the X-ray bright sources WR-A and W9 with
isothermal plane-parallel shock models require high absorption column densities
log N = 22.56 (cm) and yield characteristic shock temperatures
kT_shock ~ 3 keV (T ~ 35 MK).Comment: ApJL, 2006, in press (3 figures, 1 table
A Persistent High-Energy Flux from the Heart of the Milky Way : Integral's view of the Galactic Center
The Ibis/Isgri imager on Integral detected for the first time a hard X-ray
source, IGR J17456-2901, located within 1' of Sgr A* over the energy range
20-100 keV. Here we present the results of a detailed analysis of ~7 Ms of
Integral observations of the GC. With an effective exposure of 4.7 Ms we have
obtained more stringent positional constraints on this HE source and
constructed its spectrum in the range 20-400 keV. Furthermore, by combining the
Isgri spectrum with the total X-ray spectrum corresponding to the same physical
region around SgrA* from XMM data, and collected during part of the Integral
observations, we constructed and present the first accurate wide band HE
spectrum for the central arcmins of the Galaxy. Our complete analysis of the
emission properties of IGR shows that it is faint but persistent with no
variability above 3 sigma contrary to what was alluded to in our first paper.
This result, in conjunction with the spectral characteristics of the X-ray
emission from this region, suggests that the source is most likely not
point-like but, rather, that it is a compact, yet diffuse, non-thermal emission
region. The centroid of IGR is estimated to be R.A.=17h45m42.5,
decl.=-28deg59'28'', offset by 1' from the radio position of Sgr A* and with a
positional uncertainty of 1'. Its 20-400 keV luminosity at 8 kpc is L=5.4x10^35
erg/sec. Very recently, Hess detected of a source of ~TeV g-rays also located
within 1' of Sgr A*. We present arguments in favor of an interpretation
according to which the photons detected by Integral and Hess arise from the
same compact region of diffuse emission near the central BH and that the
supernova remnant Sgr A East could play an important role as a contributor of
very HE g-rays to the overall spectrum from this region.Comment: 14 pages, 11 figures, Accepted for publication in Ap
Investigation of Graded La2NiO4+ Cathodes to Improve SOFC Electrochemical Performance
Mixed ionic and electronic conducting MIEC oxides are promising materials for use as cathodes in solid oxide fuel cells SOFCs due to their enhanced electrocatalytic activity compared with electronic conducting oxides. In this paper, the MIEC oxide La2NiO4+ was prepared by the sol-gel route. Graded cathodes were deposited onto yttria-stabilized zirconia YSZ pellets by dip-coating, and electrochemical impedance spectroscopy studies were performed to characterize the symmetrical cell performance. By adapting the slurries, cathode layers with different porosities and thicknesses were obtained. A ceria gadolinium oxide CGO barrier layer was introduced, avoiding insulating La2Zr2O7 phase formation and thus reducing resistance polarization of the cathode. A systematic correlation between microstructure, composition, and electrochemical performance of these cathodes has been performed. An improvement of the electrochemical performance has been demonstrated, and a reduction in the area specific resistance ASR by a factor of 4.5 has been achieved with a compact interlayer of La2NiO4+ between the dense electrolyte and the porous La2NiO4+ cathode layer. The lowest observed ASR of 0.11 cm2 at 800Ă°C was obtained from a symmetrical cell composed of a YSZ electrolyte, a CGO interlayer, an intermediate compact La2NiO4+ layer, a porous La2NiO4+ electrode layer, and a current collection layer of platinum paste
The problem of shot selection in basketball
In basketball, every time the offense produces a shot opportunity the player
with the ball must decide whether the shot is worth taking. In this paper, I
explore the question of when a team should shoot and when they should pass up
the shot by considering a simple theoretical model of the shot selection
process, in which the quality of shot opportunities generated by the offense is
assumed to fall randomly within a uniform distribution. I derive an answer to
the question "how likely must the shot be to go in before the player should
take it?", and show that this "lower cutoff" for shot quality depends
crucially on the number of shot opportunities remaining (say, before the
shot clock expires), with larger demanding that only higher-quality shots
should be taken. The function is also derived in the presence of a
finite turnover rate and used to predict the shooting rate of an
optimal-shooting team as a function of time. This prediction is compared to
observed shooting rates from the National Basketball Association (NBA), and the
comparison suggests that NBA players tend to wait too long before shooting and
undervalue the probability of committing a turnover.Comment: 7 pages, 2 figures; comparison to NBA data adde
Troubles with Bayesianism: An introduction to the psychological immune system
A Bayesian mind is, at its core, a rational mind. Bayesianism is thus well-suited to predict and explain mental processes that best exemplify our ability to be rational. However, evidence from belief acquisition and change appears to show that we do not acquire and update information in a Bayesian way. Instead, the principles of belief acquisition and updating seem grounded in maintaining a psychological immune system rather than in approximating
a Bayesian processor
- âŠ