314 research outputs found

    Maximum Entropy and Bayesian Data Analysis: Entropic Priors

    Full text link
    The problem of assigning probability distributions which objectively reflect the prior information available about experiments is one of the major stumbling blocks in the use of Bayesian methods of data analysis. In this paper the method of Maximum (relative) Entropy (ME) is used to translate the information contained in the known form of the likelihood into a prior distribution for Bayesian inference. The argument is inspired and guided by intuition gained from the successful use of ME methods in statistical mechanics. For experiments that cannot be repeated the resulting "entropic prior" is formally identical with the Einstein fluctuation formula. For repeatable experiments, however, the expected value of the entropy of the likelihood turns out to be relevant information that must be included in the analysis. The important case of a Gaussian likelihood is treated in detail.Comment: 23 pages, 2 figure

    A Bayesian approach to the follow-up of candidate gravitational wave signals

    Full text link
    Ground-based gravitational wave laser interferometers (LIGO, GEO-600, Virgo and Tama-300) have now reached high sensitivity and duty cycle. We present a Bayesian evidence-based approach to the search for gravitational waves, in particular aimed at the followup of candidate events generated by the analysis pipeline. We introduce and demonstrate an efficient method to compute the evidence and odds ratio between different models, and illustrate this approach using the specific case of the gravitational wave signal generated during the inspiral phase of binary systems, modelled at the leading quadrupole Newtonian order, in synthetic noise. We show that the method is effective in detecting signals at the detection threshold and it is robust against (some types of) instrumental artefacts. The computational efficiency of this method makes it scalable to the analysis of all the triggers generated by the analysis pipelines to search for coalescing binaries in surveys with ground-based interferometers, and to a whole variety of signal waveforms, characterised by a larger number of parameters.Comment: 9 page

    Calicivirus emergence from ocean reservoirs: zoonotic and interspecies movements.

    Get PDF
    Caliciviral infections in humans, among the most common causes of viral-induced vomiting and diarrhea, are caused by the Norwalk group of small round structured viruses, the Sapporo caliciviruses, and the hepatitis E agent. Human caliciviruses have been resistant to in vitro cultivation, and direct study of their origins and reservoirs outside infected humans or water and foods (such as shellfish contaminated with human sewage) has been difficult. Modes of transmission, other than direct fecal-oral routes, are not well understood. In contrast, animal viruses found in ocean reservoirs, which make up a second calicivirus group, can be cultivated in vitro. These viruses can emerge and infect terrestrial hosts, including humans. This article reviews the history of animal caliciviruses, their eventual recognition as zoonotic agents, and their potential usefulness as a predictive model for noncultivatable human and other animal caliciviruses (e.g., those seen in association with rabbit hemorrhagic disease)

    Maximum Entropy for Gravitational Wave Data Analysis: Inferring the Physical Parameters of Core-Collapse Supernovae

    Full text link
    The gravitational wave signal arising from the collapsing iron core of a Type II supernova progenitor star carries with it the imprint of the progenitor's mass, rotation rate, degree of differential rotation, and the bounce depth. Here, we show how to infer the gravitational radiation waveform of a core collapse event from noisy observations in a network of two or more LIGO-like gravitational wave detectors and, from the recovered signal, constrain these source properties. Using these techniques, predictions from recent core collapse modeling efforts, and the LIGO performance during its S4 science run, we also show that gravitational wave observations by LIGO might have been sufficient to provide reasonable estimates of the progenitor mass, angular momentum and differential angular momentum, and depth of the core at bounce, for a rotating core collapse event at a distance of a few kpc.Comment: 44 pages, 12 figures; accepted version scheduled to appear in Ap J 1 April 200

    Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks

    Full text link
    We have calculated the evolution of cosmic ray (CR) modified astrophysical shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of diffusive shock acceleration (DSA) in 1D quasi- parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We model shocks similar to those expected around cosmic structure pancakes as well as other accretion shocks driven by flows with upstream gas temperatures in the range T0=104107.6T_0=10^4-10^{7.6}K and shock Mach numbers spanning Ms=2.4133M_s=2.4-133. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies (p/mc \gsim 1), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. For these models the time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number. The modeled high Mach number shocks all evolve towards efficiencies 50\sim 50%, regardless of the upstream CR pressure. On the other hand, the upstream CR pressure increases the overall CR energy in moderate strength shocks (MsafewM_s \sim {\rm a few}). (abridged)Comment: 23 pages, 12 ps figures, accepted for Astrophysical Journal (Feb. 10, 2005

    Maximum entropy and the problem of moments: A stable algorithm

    Full text link
    We present a technique for entropy optimization to calculate a distribution from its moments. The technique is based upon maximizing a discretized form of the Shannon entropy functional by mapping the problem onto a dual space where an optimal solution can be constructed iteratively. We demonstrate the performance and stability of our algorithm with several tests on numerically difficult functions. We then consider an electronic structure application, the electronic density of states of amorphous silica and study the convergence of Fermi level with increasing number of moments.Comment: 4 pages including 3 figure

    High Energy Cosmic Rays From Supernovae

    Get PDF
    Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around 1017\sim 10^{17} eV cosmic rays are believed to be produced in the Milky Way while above that energy their origin is probably extragalactic. In the early '30s supernovae were already identified as possible sources for the Galactic component of cosmic rays. After the '70s this idea has gained more and more credibility thanks to the the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterwards, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this Chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the non linear effects produced by accelerated particles onto the shock dynamics needed to reach the highest energies, the escape process from the sources and the transportation of cosmic rays through the Galaxy. The theoretical picture will be corroborated by discussing several observations which support the idea that supernova remnants are effective cosmic ray factories.Comment: Final draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdi

    Direct observation of non-local effects in a superconductor

    Full text link
    We have used the technique of low energy muon spin rotation to measure the local magnetic field profile B(z) beneath the surface of a lead film maintained in the Meissner state (z depth from the surface, z <= 200 nm). The data unambiguously show that B(z) clearly deviates from an exponential law and represent the first direct, model independent proof for a non-local response in a superconductor.Comment: 5 pages, 3 figure

    Nonlinear Diffusive Shock Acceleration with Magnetic Field Amplification

    Get PDF
    We introduce a Monte Carlo model of nonlinear diffusive shock acceleration allowing for the generation of large-amplitude magnetic turbulence. The model is the first to include strong wave generation, efficient particle acceleration to relativistic energies in nonrelativistic shocks, and thermal particle injection in an internally self-consistent manner. We find that the upstream magnetic field can be amplified by large factors and show that this amplification depends strongly on the ambient Alfven Mach number. We also show that in the nonlinear model large increases in the magnetic field do not necessarily translate into a large increase in the maximum particle momentum a particular shock can produce, a consequence of high momentum particles diffusing in the shock precursor where the large amplified field converges to the low ambient value. To deal with the field growth rate in the regime of strong fluctuations, we extend to strong turbulence a parameterization that is consistent with the resonant quasi-linear growth rate in the weak turbulence limit. We believe our parameterization spans the maximum and minimum range of the fluctuation growth and, within these limits, we show that the nonlinear shock structure, acceleration efficiency, and thermal particle injection rates depend strongly on the yet to be determined details of wave growth in strongly turbulent fields. The most direct application of our results will be to estimate magnetic fields amplified by strong cosmic-ray modified shocks in supernova remnants.Comment: Accepted in ApJ July 2006, typos corrected in this versio

    Algorithm for Linear Response Functions at Finite Temperatures: Application to ESR spectrum of s=1/2 Antiferromagnet Cu benzoate

    Full text link
    We introduce an efficient and numerically stable method for calculating linear response functions χ(q,ω)\chi(\vec{q},\omega) of quantum systems at finite temperatures. The method is a combination of numerical solution of the time-dependent Schroedinger equation, random vector representation of trace, and Chebyshev polynomial expansion of Boltzmann operator. This method should be very useful for a wide range of strongly correlated quantum systems at finite temperatures. We present an application to the ESR spectrum of s=1/2 antiferromagnet Cu benzoate.Comment: 4 pages, 4 figure
    corecore