32 research outputs found

    Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body–water slam and efficient wave–body interaction

    Get PDF
    AbstractIncompressible smoothed particle hydrodynamics generally requires particle distribution smoothing to give stable and accurate simulations with noise-free pressures. The diffusion-based smoothing algorithm of Lind et al. (J. Comp. Phys. 231 (2012) 1499–1523) has proved effective for a range of impulsive flows and propagating waves. Here we apply this to body–water slam and wave–body impact problems and discover that temporal pressure noise can occur for these applications (while spatial noise is effectively eliminated). This is due to the free-surface treatment as a discontinuous boundary. Treating this as a continuous very thin boundary within the pressure solver is shown to effectively cure this problem. The particle smoothing algorithm is further generalised so that a non-dimensional diffusion coefficient is applied which suits a given time step and particle spacing.We model the particular problems of cylinder and wedge slam into still water. We also model wave-body impact by setting up undisturbed wave propagation within a periodic domain several wavelengths long and inserting the body. In this case, the loads become cyclic after one wave period and are in good agreement with experiment. This approach is more efficient than the conventional wave flume approach with a wavemaker which requires many wavelengths and a beach absorber.Results are accurate and virtually noise-free, spatially and temporally. Convergence is demonstrated. Although these test cases are two-dimensional with simple geometries, the approach is quite general and may be readily extended to three dimensions

    ACCESS & LRG-BEASTS: a precise new optical transmission spectrum of the ultrahot Jupiter WASP-103b

    Full text link
    We present a new ground-based optical transmission spectrum of the ultrahot Jupiter WASP-103b (Teq=2484T_{eq} = 2484K). Our transmission spectrum is the result of combining five new transits from the ACCESS survey and two new transits from the LRG-BEASTS survey with a reanalysis of three archival Gemini/GMOS transits and one VLT/FORS2 transit. Our combined 11-transit transmission spectrum covers a wavelength range of 3900--9450A with a median uncertainty in the transit depth of 148 parts-per-million, which is less than one atmospheric scale height of the planet. In our retrieval analysis of WASP-103b's combined optical and infrared transmission spectrum, we find strong evidence for unocculted bright regions (4.3σ4.3\sigma) and weak evidence for H2_2O (1.9σ1.9\sigma), HCN (1.7σ1.7\sigma), and TiO (2.1σ2.1\sigma), which could be responsible for WASP-103b's observed temperature inversion. Our optical transmission spectrum shows significant structure that is in excellent agreement with the extensively studied ultrahot Jupiter WASP-121b, for which the presence of VO has been inferred. For WASP-103b, we find that VO can only provide a reasonable fit to the data if its abundance is implausibly high and we do not account for stellar activity. Our results highlight the precision that can be achieved by ground-based observations and the impacts that stellar activity from F-type stars can have on the interpretation of exoplanet transmission spectra.Comment: 33 pages, 17 figures, 7 tables. Accepted for publication in A

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software

    Accuracy and Efficiency Improvements in Synthetic Eddy Methods

    Get PDF
    AbstractWith performance in mind, we propose two general improvements to the popular class of turbulent inlet boundary conditions known as the ‘synthetic eddy method’, originally proposed 10 years ago by Jarrin 2006. Our updated version offers improvement in both statistical accuracy and computational efficiency. We first demonstrate that the original approach led to inaccuracies where eddy length-scale prescription was inhomogeneous. We then describe a correction to the normalisation procedure to ensure that prescribed statistics can be correctly recovered. A second improvement focusses on the computational efficiency of the method; by generalising the method to allow for arbitrary eddy placement, the required number of eddies whilst conserving the target ‘eddy density’ is reduced. The former enhancement is observed to deliver a consistent and measurable improvement over the standard formulation, whilst the latter provides efficiency savings of around 1–2 orders of magnitude. The original SEM has spawned a number of derivatives over the past decade, many of which would be expected to benefit from the improvements reported herein (whether they are used as boundary conditions, volume source terms or as part of a dynamic forcing algorithm). We apply the improved formulation to the case of a turbulent channel flow at two Reynolds numbers as well as to the case of an asymmetric planar diffuser, which is set up to exhibit a pressure-induced separation expected to be highly sensitive to upstream flow conditions. It is demonstrated that even apparently small errors in the imposed flow field can persist in such cases, adversely affecting the downstream flow prediction
    corecore