
The overset grid method, applied to the solution of
the incompressible Navier-Stokes equations in two

and three spatial dimensions.

A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the
Faculty of Engineering and Physical Sciences.

2011

Alex Skillen

School of Mechanical, Aerospace and Civil Engineering

Contents

Abstract 18

Declaration 19

Copyright Statement 20

Nomenclature 21

Acknowledgements 25

1 Introduction 26

1.1 Numerical Techniques . 29

1.2 Objectives of this Research . 29

1.3 Layout of this Thesis . 30

2 Literature Review 31

2.1 Non-Conservative Interface Treatment . 31

2.2 Conservative Interface Treatment . 35

2.2.1 DRAGON Grids . 36

2.2.2 Zonal Interface Generation . 39

2.2.3 Conservative Interpolations . 42

2.2.4 Semi-Conservative Interpolations . 47

2.3 Alternative methods to the overset method in dealing with complex geometries . . . 53

2.4 Conclusion . 60

2

3 Numerical Aspects of a Structured CFD Code 61

3.1 Introduction . 61

3.2 Physical approximations employed in the present code 64

3.3 The Finite Volume Method . 66

3.3.1 Basic Discretisation . 66

3.3.2 Intra-Grid Interpolation Practices . 70

3.4 Solution Procedures . 75

3.4.1 Gauss-Seidel Iterative Method . 76

3.4.2 Alternating Direction Implicit method . 77

3.4.3 Convergence . 79

3.4.4 The Tri-Diagonal Matrix Algorithm . 79

3.4.5 Coupled Systems of Equations . 80

3.4.6 Under-Relaxation . 81

3.4.7 Deferred Correction Approach . 83

3.5 The SIMPLE Algorithm . 84

3.5.1 Pressure ‘Checkerboarding’ . 88

3.6 Boundary Conditions . 92

3.6.1 Bulk Correction Methods . 93

3.7 Coordinate Transformations . 96

4 Modelling Turbulence 98

4.1 Introduction . 98

4.2 Reynolds-Averaged Navier-Stokes Equations (RANS) 99

4.3 The Eddy Viscosity Hypothesis . 100

4.3.1 Two-Equation Models . 101

4.3.2 Near Wall Treatments . 103

4.3.3 Boundary Conditions . 105

4.4 Length scale correction . 106

4.5 Alternative Turbulence Models . 107

5 The Overset Algorithm 109

5.1 Introduction . 109

3

5.2 Hole-Cutting . 110

5.3 Triangle-Triangle Intersection test . 117

5.4 Inter-Grid Interpolations . 120

5.4.1 Linear Interpolation . 121

5.4.2 Mass-Flux based interpolation . 126

5.5 Binary search trees, Alternating digital trees, and geometric intersection testing . . 132

5.5.1 Binary Search Trees . 133

5.5.2 The basic ADT method . 140

5.5.3 Extending the basic ADT method to solve geometric intersection problems. . 142

5.6 Integration over surfaces with overlapping grids . 147

5.7 Domain Connectivity . 159

6 Selected test cases 163

6.1 Introduction . 163

6.2 Lid Driven Cavity flow . 164

6.2.1 Single block results . 165

6.2.2 Overset grids with one-way information transfer 166

6.2.3 Overset grids with two-way information transfer 167

6.2.4 Multiple overset grids. 168

6.2.5 Cavity with a circular cylinder inserted. 169

6.2.6 Summary . 170

6.3 The flow around two rotating cylinders . 172

6.3.1 Boundary conditions and numerical model . 172

6.3.2 Computational Grid . 172

6.3.3 Results . 173

6.4 Summary . 174

6.5 Flow impinging onto a concave surface . 175

6.5.1 Geometry and computational grid . 175

6.5.2 Boundary conditions and numerical model . 175

6.5.3 Results . 175

6.6 Figures . 177

4

7 Backward Facing Step Flow Calculation 216

7.1 Introduction . 216

7.2 Boundary Conditions and Geometry . 217

7.3 Computational Model . 218

7.4 Computational Grid . 219

7.5 Results . 221

7.5.1 Reattachment Point . 221

7.5.2 Mean Velocity . 222

7.5.3 Turbulence results . 223

7.5.4 Pressure . 224

7.6 Summary . 225

7.7 Figures . 226

8 Two element airfoil turbulent flow computations. 239

8.1 Introduction . 239

8.2 Computational domain and airfoil geometry . 240

8.3 Numerical Model . 241

8.3.1 Computational Grid . 241

8.3.2 Boundary Conditions . 244

8.4 Results . 245

8.4.1 pressure distribution . 245

8.4.2 mean velocity . 245

8.4.3 Turbulence Results . 248

8.5 Conclusion . 250

8.6 Figures . 251

9 Three-Dimensional Pipe Flows 266

9.1 Introduction . 266

9.2 The flow through a pipe with a 90◦ bend. 267

9.2.1 Geometry, boundary conditions and numerical model. 268

9.2.2 Computational mesh . 268

9.2.3 Results . 269

5

9.2.4 Conclusion . 272

9.3 The Carotid Bifurcation . 273

9.3.1 Computational model . 273

9.3.2 Boundary conditions and geometry . 274

9.3.3 Computational Grid . 276

9.3.4 Results . 278

9.3.5 Conclusion . 288

9.4 Figures . 288

10 Wing-body junction flow 318

10.1 Introduction . 318

10.2 Geometry and computational grids . 319

10.3 Boundary conditions . 321

10.4 Numerical model . 322

10.5 Results and discussion . 322

10.5.1 Pressure field results . 323

10.5.2 Symmetry plane mean velocity and turbulence results, upstream of leading edge324

10.5.3 Flow features at maximum wing thickness . 327

10.5.4 Flow in the wake . 329

10.6 Conclusion . 331

10.7 Figures . 333

11 Conclusion 361

11.1 Future Work . 363

Bibliography 365

Final word count: ∼ 70,000

6

List of Figures

1.1 A duct and obstacle problem meshed with block-structured grids (above) and over-

lapping grids (below). 27

2.1 The grid used by Benek et. al. to develop the Chimera grid scheme. Image from [5]. 32

2.2 A closeup of the flap region. Image from [5]. 32

2.3 Pressure coefficient variation over an airfoil with flap. α = 3◦, β = 10◦ and M∞ = 0.6.

Image from [5]. 33

2.4 2D flow over a cylinder simulated with overset grids and Lagrangian polynomial in-

terpolation. Image from [6]. 34

2.5 2D DRAGON grid generation. Image from [15]. 37

2.6 DRAGON grid demonstrating the mesh over the letters CFD. Image from [15]. . . . 37

2.7 Pressure contours around the letter ‘C’ using DRAGON grid technology. Image from

[15]. 38

2.8 A 3D DRAGON grid demonstrating the ability to mesh highly complex domains as

encountered in the film cooling of turbine blades. Image from [16]. 39

2.9 ‘Zonal Interface Generation’. 40

2.10 The grids used by Wang to simulate a slow moving shock problem. Image from [17]. 41

2.11 Density contours for moving shock problem at times t = 1 and t = 2 for the ZIG

method (a) and non-conservative Chimera (b). Image from [17]. 41

2.12 1D grids used by Berger to demonstrate conservative interpolation. Image from [19]. 42

2.13 2D grid used by Berger to develop conservative interpolation. Image from [19] 43

2.14 A more complex 2D interpolation problem, considered by Berger. Image from [19] . 44

7

2.15 Results of simulating the slow moving shock problem, using the viscous Burger’s

equation as a governing equation, and the conservative interpolation of Chesshire and

Henshaw. Image from [20]. 45

2.16 Conservation error as a function of time. Image from [20]. 46

2.17 The grids used for the simulation of 3D oscillating flow. 48

2.18 Pressure and velocity contours at time t = 0.25 and Re = 100. (a)MFBI; (b)linear

interpolation. Image from [1]. 49

2.19 Convergence histories for the pressure and U-velocity residuals for three timesteps.

(SI=linear interpolation). Image from [1]. 50

2.20 Geometry (above), and overset grids used in [13] for the flow around a bridge foundation. 51

2.21 Flow stream traces obtained in [13] for the flow around a bridge foundation. 52

2.22 Surface pressure coefficient over a multi-element airfoil. Image from [21]. 52

2.23 Immersed boundary method example problem and grid. Image from [24]. 53

2.24 The transfer of force to surrounding fluid nodes. Massless points are represented by

the white circles, and are connected by the blue ‘elastic fibres’. Shaded region shows

the region of influence of a point. Image from [24]. 54

2.25 Different approximations of the Dirac δ-function. Image from [24]. 55

2.26 Turbulent flow over a sphere. (a) Immersed boundary LES particle tracks. (b) Ex-

perimental flow visualisation. Image from [24]. 57

2.27 The free-fall of 5 blocks through a fluid. (a) Initial stage. (b) Intermediate stage. (c)

final stage. Image from [31]. 58

2.28 The simulation of sperm cells swimming in a channel with elastic walls. Image from

[32]. 59

3.1 A typical three-dimensional control volume illustrating the standard CFD nomencla-

ture used for referencing surrounding variables. 67

3.2 Odd-Even decoupling of the pressure field which may be found when using colocated

variables, with linear interpolation to determine the mass imbalance. 89

3.3 A staggered grid arrangement. 90

3.4 A sample two-dimensional outlet. 94

5.1 Initial user generated grids for the flow around a circular cylinder. 113

8

5.2 Grids for the flow over a circular cylinder, after removing all cells that intersect the

cylinder’s wall. 114

5.3 Grids for the flow over a circular cylinder, after removing any invalid cells, and tagging

all (current) interpolation cells (interpolation cells are denoted through the use of

heavy lines). 115

5.4 Grids for the flow over a circular cylinder, after removing any excess cells in the

overlap region. These are the final grids, ready to be used in a simulation. 116

5.5 Figure illustrating the relationship between the interval on L that each triangle makes,

and whether or not they intersect one another. 118

5.6 The geometry of triangle TB three-dimensional space. V Bi are the vertices of TB, KBi

are the projections of these vertices onto πA. Points E and F are the points at which

the lines V B1 V
B
3 and V B2 V

B
3 respectively intersect the plane πA. Finally, the line L is

the (infinite) line of intersection between the planes πA and πB. 119

5.7 A sketch of the grids used to derive the conservative interface conditions. 127

5.8 The 3D grids used to demonstrate the MFBI method. Grids are extend in the ζ, k

direction into the page. 129

5.9 A large binary search tree. 134

5.10 A simple binary search tree, and one possible arrangement of nodes in computer

memory. 135

5.11 The resulting binary search tree for the virtual address book. 136

5.12 Degenerate Binary Search Trees. 138

5.13 A two-dimensional sample dataset, and the resulting ADT. 141

5.14 An alternative ADT formulation based on the method of Reference [56]. 146

5.15 Relationship between the bisection process and the location of nodes in space, based

on the alternative ADT formulation of Reference [56]. 146

5.16 Sample overlapping surface grids which we wish to perform integration over. 149

5.17 The same sample overlapping surface grids, after removing the overlapping cells from

the coarsest subset. 150

5.18 Ordered boundary strings (thick lines) and the points used in making up the strings

(circles). 152

9

5.19 Boundary string segment pairs. Different pairs are indicated through the use of dif-

ferent coloured lines. 154

5.20 A sample matched pair of boundary strings, with the closest two points joined. . . . 154

5.21 After the insertion of the first triangle, in this case a convex quad is encountered.

Here it can be seen that only 4PiPi+1Pj is valid. 155

5.22 The zipping proceeds in the positive direction (toward the end of the string) until the

end of a segment is encountered. 157

5.23 The end of each segment is connected to the remaining points of the other segment,

thereby completing the zipping in the positive direction. 157

5.24 The final zipped segment pair. 158

5.25 Final zipped grids, before and after triangulating the final gaps. 159

6.1 A schematic of the lid-driven cavity problem with the physical boundary conditions. 178

6.2 The 30× 30 mesh used for single block simulations. 179

6.3 Predicted x-velocity contours for single block lid driven cavity computation, nor-

malised by lid velocity. Re = 100. Present code (red line) is compared with the

commercial CFD package Fluent (black line). 180

6.4 Predicted y-velocity contours for single block lid driven cavity computation, nor-

malised by lid velocity. Re = 100. Present code (red line) is compared with the

commercial CFD package Fluent (black line). 181

6.5 Predicted pressure contours for single block lid driven cavity computation, normalised

by 0.5ρU2
lid. Re = 100. Present code (red line) is compared with the commercial CFD

package Fluent (black line). 182

6.6 Predicted pressure contours for single block lid driven cavity computation when using

a 52×52 cell mesh. Re = 100. Present code (red line) is compared with the commercial

CFD package Fluent (black line). 183

6.7 Mesh used for one-way information transfer test. 184

6.8 Predicted x-velocity contours for one-way information transfer test. Re = 100. Solu-

tion on background grid is shown in black, while the solution on the overset grid is

shown in red. 185

10

6.9 Predicted y-velocity contours for one-way information transfer test. Re = 100. Solu-

tion on background grid is shown in black, while the solution on the overset grid is

shown in red. 186

6.10 Predicted pressure contours for one-way information transfer test. Re = 100. Solution

on background grid is shown in black, while the solution on the overset grid is shown

in red. 187

6.11 Mesh used for two-way information transfer test. 188

6.12 Predicted x-velocity contours for two-way information transfer test. Re = 100. Solu-

tion on background grid is shown in black, while the solution on the overset grid is

shown in red. 189

6.13 Predicted y-velocity contours for two-way information transfer test. Re = 100. Solu-

tion on background grid is shown in black, while the solution on the overset grid is

shown in red. 190

6.14 Predicted pressure contours for two-way information transfer test. Re = 100. Solution

on background grid is shown in black, while the solution on the overset grid is shown

in red. 191

6.15 Profiles of x-velocity taken vertically through cavity at x/L = 0.25, 0.5 and 0.75.

Overset grids are compared with single block solution. Distance between adjacent

locations where profiles are taken corresponds to half the lid velocity. 192

6.16 Profiles of pressure taken vertically through cavity at x/L = 0.25, 0.5 and 0.75.

Overset grids are compared with single block solution. Distance between adjacent

locations where profiles are taken corresponds to half the dynamic pressure (based on

lid velocity). 193

6.17 Mesh used for multiple overset grids test. User generated sub-grids (above). Overset

mesh after automatic hole cutting (below). 194

6.18 Predicted x-velocity contours for multiple overset grids test. Re = 100. Solution on

background grid is shown in black, while the solution on overset grids is shown in red

and blue for the square and circle respectively. 195

6.19 Predicted v-velocity contours for multiple overset grids test. Re = 100. Solution on

background grid is shown in black, while the solution on overset grids is shown in red

and blue. 196

11

6.20 Predicted pressure contours for multiple overset grids test. Re = 100. Solution on

background grid is shown in black, while the solution on overset grids is shown in red

and blue. 197

6.21 Predicted x-velocity contours for the cavity with obstruction case. Re = 100. Solution

on background grid is shown in black, while the solution on overset grids is shown in

red and blue for the square and circle respectively. 198

6.22 Predicted v-velocity contours for for the cavity with obstruction case. Re = 100.

Solution on background grid is shown in black, while the solution on overset grids is

shown in red and blue. 199

6.23 Predicted pressure contours for for the cavity with obstruction case. Re = 100.

Solution on background grid is shown in black, while the solution on overset grids is

shown in red and blue. 200

6.24 Schematic of the two-rotating cylinders case with boundary conditions applied. . . . 201

6.25 Overset meshes used for the flow around two rotating cylinders. 202

6.26 Flow streamlines around two rotating cylinders. 203

6.27 Contours x-velocity, normalised by inlet streamwise velocity 204

6.28 Contours of y-velocity, normalised by inlet streamwise velocity 205

6.29 Contours of pressure. 206

6.30 Normalised residuals of the pressure correction equation. 207

6.31 Block-structured grid used for comparative purposes. 208

6.32 Comparisons with FLUENT and the present code. x-velocity in the wake, 3R from

rotation axis. 209

6.33 Comparisons with FLUENT and the present code. y-velocity in the wake, 3R from

rotation axis. 210

6.34 Comparisons with FLUENT and the present code. Pressure in the wake, 3R from

rotation axis. 211

6.35 Schematic of the impingement flow from a slot onto a concave surface. 212

6.36 Grids used in the calculation involving fluid impinging onto a concave surface. . . . 213

6.37 Contours of U-velocity, normalised by inlet velocity. Re = 5, 000. 213

6.38 Contours of V-velocity, normalised by inlet velocity. Re = 5, 000. 214

6.39 Contours of pressure. Re = 5, 000. 214

12

6.40 Contours of k, normalised by inlet k. Re = 5, 000. 215

6.41 Contours of µt/µ. Re = 5, 000. 215

7.1 Typical flow features encountered in a backward-facing step flow. 226

7.2 Coarse grids (16, 500 nodes) used for backward facing step flow simulation. Every

second grid-line omitted for clarity. 227

7.3 Sample Block-Structured grid arrangement. 228

7.4 Typical near-wall grid spacing. Vertical tags at the top of the plot denote the di-

mensionless location of the centroid of the first twenty-five near wall cells. Profile

obtained at x/H = 20 on lower wall, for the medium resolution grid. 228

7.5 Grid sensitivity test. Plots of skin friction coefficient along the lower wall, downstream

of the step, for three different grid resolutions. 229

7.6 Plots of skin friction coefficient along the lower wall, downstream of the step, with

and without the length scale correction term (33,000 node grid). 230

7.7 Flow streamlines, with close-up around reattachment point. Re = 33, 000. 231

7.8 Normalised streamwise velocity profiles at x/H =1, 3, 5, 7 and 9. Experimental data

from [60]. Re = 33, 000. 232

7.9 Contours of normalised streamwise velocity, u
ubulk

. Re = 33, 000. 232

7.10 Contours of normalised transverse velocity, v
ubulk

. Re = 33, 000. 233

7.11 Profiles of normalised streamwise normal stress, 100u′u′/u2
bulk at x/H =1, 3, 5, 7 and

9. Experimental data from [60].Re = 33, 000. 233

7.12 Profiles of normalised shear stress, at x/H =1, 3, 5, 7 and 9. Re = 33, 000. 234

7.13 Contours of normalised turbulent kinetic energy, k/u2
in. Re = 33, 000. 235

7.14 Contours of turbulent dissipation rate, ε. Re = 33, 000. 236

7.15 Contours of turbulent to laminar viscosity ratio, µt/µ. Re = 33, 000. 237

7.16 Pressure coefficient along the lower wall. Experimental data from [60]. Re = 33, 000. 237

7.17 Contours of normalised pressure, P/(0.5ρu2
in). Re = 33, 000. 238

8.1 Geometry of multi-element airfoil. 252

8.2 Overset mesh used, comprising of a total of 6 subgrids. 253

8.3 Close-up of meshes in gap region. 254

8.4 Mesh used in [64] for the study of the same geometry using block-structured grids. . 255

13

8.5 Close-up of mesh used in [64] for the study of the same geometry using block-

structured grids. 255

8.6 An example of the domain decomposition that may be required to achieve a block-

structured grid. Each coloured region represents a block. 256

8.7 Profiles of the streamwise velocity for two grid resolutions. Initial grid, 66,000 cells

(Green) and fine grid, 120,000 cells (Red). 257

8.8 Contours of pressure coefficent Cp. Insert shows detail in region of gap. 258

8.9 Pressure distribution over main airfoil and flap . 259

8.10 Flow streamlines. Insert shows detail in region of gap. 260

8.11 Profiles of the streamwise velocity. Profile locations are indicated in the figure (the

orientation and location of the profiles in the sketch is accurate, although the length

is not). Locations are also stated in Table 8.1. 261

8.12 Skin friction over the flap surface. Plot indicates that transition is predicted too late. 262

8.13 Contours of the turbulent kinetic energy, normalised by the square of the inlet velocity.263

8.14 Profiles of the streamwise normal stress component 100u′u′/U2
e . Profile locations are

indicated in the figure (to scale) and are stated in Table 8.1. 264

8.15 Profiles of the shear stress component −100u′v′/U2
e . Profile locations are indicated

in the figure (to scale) and are stated in Table 8.1. 265

9.1 Computational mesh . 289

9.2 Contours of axial velocity. Vectors in symmetry plane. 290

9.3 Axial velocity at the symmetry plane at four streamwise locations. 291

9.4 Secondary vectors with contours coloured by axial velocity. Inner side of pipe to left

of each sub-figure. 292

9.5 Secondary vectors with contours coloured by axial velocity in the plane θ = 58.5. For

legend see page 292. Inner side of pipe to left of figure. 293

9.6 Secondary vectors with contours coloured by axial velocity in the plane θ = 81.9. For

legend see page 292. Inner side of pipe to left of figure. 294

9.7 Pressure in the symmetry plane. 295

14

9.8 Profiles of secondary flow x-component. Distance between two adjacent x-planes at

which the profiles are given correspond to a velocity of 0.6Uin. Inner side of pipe to

left of each sub-figure. 296

9.9 Arteries in a human neck. Common carotid artery (labelled common caroti. in the

figure) bifurcates into the internal and external carotid arteries. 297

9.10 The geometry used for the Carotid artery bifurcation. Table 9.1 shows the values of

the dimensions labeled 1− 13. 298

9.11 Meshes used. 299

9.12 Mesh used in [85] for the flow through a human aortic arch. Note the absence of collar

grids. 300

9.13 Grid sensitivity test showing contours of wall shear stress on bifurcation wall. 301

9.14 Grid sensitivity test showing wall shear stress at the symmetry plane along the

common-internal arterial wall (i.e. at α = π) for the two grid resolutions under

consideration. 302

9.15 Sample of zipped grids used in order to integrate mass fluxes over overset grids.

Quadrilaterals are taken from underlying structured grids, while triangular cells have

been added by zipper algorithm. Inlet zipped grid (above) and internal carotid artery

zipped grid (below). 303

9.16 View at symmetry plane, showing the locations of planes used in the analysis. 304

9.17 Velocity vectors in the symmetry plane. Computed results (left) are compared with

experimental data (right). 305

9.18 Contours of axial velocity. Note that contours are not displayed in the region of the

intersection due to the fact an axial direction cannot be defined. Re = 800 306

9.19 Secondary flow vectors and contours of axial velocity at SS1, SS3 and SS6 (left).

Contours of the pressure, with the locations of planes SS1, SS3 and SS6 indicated

(right). 307

9.20 Flow streamlines showing helical vortices and flow separation 308

9.21 Axial velocity profiles at lines defined by the intersection of the symmetry plane with

planes CC1-4. 309

9.22 Axial velocity profiles at lines defined by the intersection of the symmetry plane with

planes SS1-6. 310

15

9.23 Axial velocity profiles taken normal to symmetry plane taken through the diameter,

at planes SS1-6. Re=800. 311

9.24 Tangential velocity profiles (i.e. velocity component parallel to the symmetry plane)

at profile locations taken normal to the symmetry plane, on SS1-6. Re=800. 312

9.25 Wall shear stress along the common-internal wall. Stress is normalised by the uniform

value for the CCA, upstream of the influence of the bifurcation. Re = 400 313

9.26 Wall shear stress along the common-internal wall. Stress is normalised by the uniform

value for the CCA, upstream of the influence of the bifurcation. Re = 1200 314

9.27 Wall shear stress along the common-internal wall at the symmetry plane, normalised

by the uniform value for the CCA. 315

9.28 Wall shear stress along the common-external wall at the symmetry plane. 316

9.29 Pressure along the common-internal wall at the symmetry plane. 317

10.1 Sample grids used for the hole cutting of a generic wing-fuselage junction junction

problem. 334

10.2 Junction geometry and right hand coordinate system used. Origin located at the

junction between the wing’s leading edge and the groundplate. 335

10.3 Computational grids used. Domain decomposed via the use of three overset grids. . 336

10.4 Contours of pressure coefficient at the spanwise location y/T = 2.0 for the two grid

resolutions considered. 337

10.5 Grids used in [93]. 338

10.6 Contours of pressure on wing and groundplate walls (scale increasing blue to red),

with secondary velocity vectors in the wake and symmetry plane (not drawn to same

scale). 339

10.7 Iso-surface of Q = 0.5, showing the vortex structure. Note that translucency has been

applied to the surface of the wing. 340

10.8 Contours of the streamwise velocity component, U , at two spanwise locations, y/T =

2.0 (above) and y/T = 0.2 (below). 341

10.9 Contours of turbulent kinetic energy at two spanwise locations, y/T = 2.0 (above)

and y/T = 0.2 (below). 342

10.10Flow streamlines at y/T = 2. 343

16

10.11Contours of pressure coefficient, Cp = 2(P − P∞)/(ρU2
∞), on the lower wall, with

experimental comparison. 344

10.12Profiles of pressure coefficient on the wing surface at four spanwise locations, y/T =

1.72, 1.46, 0.40 and 0.13. 345

10.13Normalised streamwise velocity component in the symmetry plane (z/T = 0) 346

10.14Vertical velocity component, V , in the symmetry plane (z/T = 0) 347

10.15Streamwise normal Reynolds stress component, u′u′, in the symmetry plane (z/T = 0)348

10.16Reynolds shear stress component, −u′v′, in the symmetry plane (z/T = 0) 349

10.17Enlargement of the first four profiles of Figure 10.16. Stress component, −u′v′, in the

symmetry plane (z/T = 0) . 350

10.18Enlargement of the first four profiles of Figure 10.15. Stress component, u′2, in the

symmetry plane (z/T = 0) . 351

10.19Normalised streamwise velocity component, U, in a yz-plane at maximum wing thick-

ness (x/T = 0.75) . 352

10.20Normalised cross-stream velocity component, W, in a plane at maximum wing thick-

ness (x/T = 0.75) . 353

10.21Streamwise normal Reynolds stress component, u′2, at maximum wing thickness

(x/T = 0.75) . 354

10.22Normalised cross-stream Reynolds shear stress component, u′w′, at maximum wing

thickness (x/T = 0.75) . 355

10.23Contours of the Q-criterion in the plane x/T = 6.38 and secondary velocity vectors. 356

10.24Normalised streamwise velocity component, U, in a plane in the wake(x/T = 6.38) . 357

10.25Normalised cross-stream velocity component, W, in a plane in the wake(x/T = 6.38) 358

10.26Streamwise normal Reynolds stress component, u′2, in the wake(x/T = 6.38) 359

10.27Normalised cross-stream Reynolds shear stress component, u′w′, in the wake(x/T =

6.38) . 360

17

Abstract

• The University of Manchester

• Alex Skillen

• Doctor of Philosophy

• The overset grid method, applied to the solution of the incompressible Navier-Stokes equations
in two and three spatial dimensions.

• 2011

The generation of structured grids around complex geometries is generally a difficult task. This
task is typically a major bottleneck in the overall solution procedure; however, the overset grid
method can be used to relieve much of this burden. An overset grid consists of a set of simple
component grids, which can overlap arbitrarily (provided there is sufficient overlap to interpolate
from). The union of all simple grids should then delineate the global domain. This allows complex
domains to meshed using a series of simple meshes. Interpolation boundary conditions are enforced
at internal boundaries to ensure a continuous solution. Standard tri-linear interpolation is typi-
cally used for this purpose, although there are alternative methods that attempt to enforce global
conservation.

A new CFD code has been developed that incorporates the overset grid method in three spatial
dimensions. This code uses the steady state, finite volume discretisation method. SIMPLE pressure
velocity coupling has been used on a colocated grid with Rhie-Chow interpolation for face veloci-
ties. Different interpolation methods have been compared for the information transfer at internal
boundaries from one grid to the next. It has been shown that for a variety of test cases, continuous
and accurate solutions are obtained from one grid to another, which are comparable to those of
the single-block or block-structured solutions, or to experimental data (where available). A new
hole cutting algorithm and bulk correction outlet condition are presented. Improvements to existing
digital tree data structures are also described.

Lid driven cavity flow, the flow around rotating cylinders, and flow impingement onto a concave
surface are considered in order to demonstrate the method. The flow over a backward facing step,
over a multi-element airfoil, through a bifurcating artery and over a wing-body junction are then
considered (with experimental comparison). This demonstrates the range of applicability of the
method. In all cases, the overset method offers significant advantages over block-structured solutions
that are available in the literature. It is shown that greater numerical efficiency is generally achievable
via the use of an overset simulation: Since the gridding is flexible, high aspect ratio cells need not
propogate into the domain (as is often the case for a block-structured arrangement). Also, much
of the domain away from localised regions of geometrical complexity can be meshed with efficient
Cartesian grids.

18

Declaration

No portion of the work referred to in this report has been submitted in support of an

application for another degree or qualification of this or any other university or other

institution of learning.

19

Copyright Statement

The author of this thesis (including any appendices and/or schedules to this thesis) owns certain

copyright or related rights in it (the “Copyright”) and s/he has given The University of Manchester

certain rights to use such Copyright, including for administrative purposes.

Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may

be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and

regulations issued under it or, where appropriate, in accordance with licensing agreements which the

University has from time to time. This page must form part of any such copies made.

The ownership of certain Copyright, patents, designs, trade marks and other intellectual property

(the “Intellectual Property”) and any reproductions of copyright works in the thesis, for example

graphs and tables (“Reproductions”), which may be described in this thesis, may not be owned

by the author and may be owned by third parties. Such Intellectual Property and Reproductions

cannot and must not be made available for use without the prior written permission of the owner(s)

of the relevant Intellectual Property and/or Reproductions.

Further information on the conditions under which disclosure, publication and commercialisation

of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may

take place is available in the University IP Policy

(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any relevant Thesis restric-

tion declarations deposited in the University Library, The University Librarys regulations

(see http://www.manchester.ac.uk/library/aboutus/regulations) and in The Universitys policy on

Presentation of Theses

20

Nomenclature

Symbol Usage

a coefficients of P
′

in the pressure correction equation

A Coefficients of u or v in the discretised momentum equa-

tions

C Mass flux through a cell’s face
(
kg · s−1

)
g1, g2 Coefficients used in the QUICK scheme

i Grid cell index in the ξ direction.

j Grid cell index in the η direction

J Jacobian

k Grid number

k Specific turbulent kinetic energy = 1
2u
′
iu
′
i

l Iteration number

Ni Number of nodes in the i direction

Nj Number of nodes in the j direction

P Pressure
(
N ·m−2

)
Ret ≡ ρk2

µε

ūi Component of mean velocity in ith direction
(
m · s−1

)
U i contravariant velocity components

x A component of the global coordinate system (Cartesian

reference frame). Perpendicular to both the y and z direc-

tions.

21

y A component of the global coordinate system (Cartesian

reference frame). Perpendicular to both the x and z direc-

tions.

z A component of the global coordinate system (Cartesian

reference frame). Perpendicular to both the x and y direc-

tions.

Greek Symbols

α Under-relaxation factor

Γ Diffusivity or boundary of a domain

∆x Grid spacing in the x direction

∆y Grid spacing in the y direction

∆η Grid spacing in the η direction

∆ξ Grid spacing in the ξ direction

ε Turbulent dissipation rate

ζ A component of the local coordinate system. Perpendicular

to the ξ and η directions.

η A component of the local coordinate system. Perpendicular

to the ξ and ζ directions.

λ Linear interpolation factor

µ Fluid’s dynamic viscosity
(
N · s ·m−2

)
µt Turbulent viscosity

(
N · s ·m−2

)
ξ A component of the local coordinate system. Perpendicular

to the η and ζ directions.

ρ Fluid’s density
(
kg ·m−3

)
σk, σε Turbulent Prandtl numbers for k and ε transport equations.

φ Conserved scalar quantity.

ϕ An interpolation coefficient

χ An interpolation coefficient

22

ψ An interpolation coefficient

Ω The overall domain (ΩA,ΩB , etc. are subdomains)

Subscripts & Superscripts

b The bottom face of cell P

B The node to the bottom of node P , and adjacent to P .

e The east face of cell P

E The node to the east of node P , and adjacent to P .

EE The node to the east of node E, and adjacent to E.

n The north face of cell P

N The node to the north of node P , and adjacent to P .

NN The node to the north of node N , and adjacent to N .

P The cell that is currently being updated.

s The south face of cell P

S The node to the south of node P , and adjacent to P .

SS The node to the south of node S, and adjacent to S.

V Cell’s volume
(
m3
)

w The west face of cell P

W The node to the west of node P , and adjacent to P .

WW The node to the west of node W , and adjacent to W .

Acronyms

ADI Alternating Direction Implicit

CDS Central Difference Scheme

CFD Computational Fluid Dynamics

CV Control Volume

LES Large Eddy Simulation

MFBI Mass-Flux Based Interpolation

23

QUICK Quadratic Upwind Interpolation for Convective Kinematics

RMS Root Mean Squared

STREAM Simulation of Turbulent Reynolds-averaged Equations for

All Mach numbers, (an in-house CFD code).

TDMA Tri-Diagonal Matrix Algorithm

UMIST Upstream Monotonic Interpolation for Scalar Transport

UDS Upwind Difference Scheme

ZIG Zonal Interface Generation

24

Acknowledgements

• Thank you Tim and Hector, for your time, help and support with this project.

• Thank you Rob, for your constructive feedback on earlier progress reports.

• Thank you Adam, for being the perfect inspiration.

• Thank you Vicky, for your love and support (and for doing the dishes recently!)

• Thank you Mum and Dad, for everything else!

A most sincere thanks to all.

25

Chapter 1

Introduction

The majority of flows that are of engineering interest involve complex geometrical domains. Exam-

ples of such complex domains range from the flow over an entire aircraft, to internal biomedical flows

such as the flow induced by a beating heart. When simulating such problems within a CFD frame-

work, it is first necessary to generate a suitable grid over which the discretised governing equations

can be solved. However, the generation of grids around complex geometries poses many challenges.

To overcome these challenges, the overset grid method can be used.

In the overset grid method, it is noted that it is not a necessary condition to have grid-block

interfaces aligned with one another (in contrast to a block-structured grid arrangement). Figure

1.1 illustrates an overset grid that has been generated with a Cartesian background mesh and a

body-fitted curvilinear mesh around the obstacle area. An equivalent block-structured arrangement

is also illustrated. It is evident from Figure 1.1 that the overset meshing technique has the potential

to be far simpler at the pre-processing stage. This is even more apparent in three spatial dimensions,

or for more complex or time-varying geometries.

Structured grids in general (including the overset method) also have many advantages over

unstructured formulations. An unstructured mesh is characterised by irregular connectivity, with

cell shapes that may vary, dependent on the solver. While the latter does offer the ability to mesh

very complex domains with relative ease, this comes at a cost. Firstly, the hexahedral cells that

are typically used in a structured formulation are particularly well suited for resolution of near wall

regions. High aspect ratio cells can be employed which are aligned with the flow direction for a wall

bounded flow. In this case, a perturbation to the main streamwise velocity component will induce

26

only a small mass imbalance in the cell (since the face area normal to the velocity vector is small).

On the other hand, other cell shapes that are of high aspect ratio may suffer from stability issues

since relatively large face areas (present due to the high aspect ratio) will generally have a large

projection normal to the streamwise direction. Any perturbation to the main streamwise flow in this

case will cause a large mass imbalance in the cell which may produce instabilities when attempting

to set the cell’s pressure. In order to overcome this, one typically requires the near-wall cells of a

mesh that employs triangular cells to be close to equilateral triangles (a great burden on the mesh

size). Alternatively, a hybrid mesh could be used which uses hexahedral cells close to a wall, and

triangular cells away from the wall. However, in this case the complexity of the underlying flow solver

would be increased since more than one cell shape would need to be accounted for. In addition

to the aforementioned disadvantage, unstructured grids are also typically very expensive to use.

Cell connectivity information needs to be computed and stored. Expensive gradient reconstruction

procedures are also generally required. There are also issues in implementing higher order convection

schemes. Finally, the generation of a high quality unstructured mesh is not as easy as one may expect.

While it is very easy to mesh an arbitrary domain with unstructured cells, the control of the cell

spacing can be challenging. In the overset method however, it is straightforward to cluster the grid

close to solid surfaces without distorting the global mesh density; a feature that is highly desirable,

particurly ar high Reynolds number. The overset method does not suffer from these disadvantages

Figure 1.1: A duct and obstacle problem meshed with block-structured grids (above) and
overlapping grids (below).

The overset method’s solution procedure commences by solving the governing equations over one

27

mesh with boundary conditions at internal boundaries obtained by interpolation from a suitable

donor mesh. This is then repeated in an iterative manner on all other meshes until convergence

is achieved. The main features of an overset CFD code that are unique to the overset formulation

are: the interpolation algorithm; and an algorithm that constructs the overall grid from the set

of component grids. The former algorithm interpolates information from a donor grid, providing

boundary condition data at internal boundaries for the grid that is being solved on. The latter

algorithm tags each node on a component grid with an integer code that dictates what type of node

is being dealt with. Each node on a component grid must be one of the following;

• A standard discretisation node. If the given node can be discretised to the required order

using nodes on its own grid only, and is not an unused node (see later), then it is a standard

discretisation node.

• An interpolation node. If the given node can be interpolated from discretisation nodes on

another grid, and is not a discretisation node or unused node itself, then the node is an

interpolation node.

• An unused node. If the node lies within an overlap region where there is more than one mesh

covering the same physical space, and it is not required by interpolation nodes from other

grids, or by discretisation nodes on the same grid, then the node may be tagged as an unused

node. The node is also tagged unused if it lies outside the solution domain

It is possible to generate highly efficient algorithms that automatically tag all nodes on each

component mesh accordingly. Of key significance is the fact that if part of the mesh is outside of the

domain, the unused mesh nodes are still present, but are tagged such that they are not solved on.

If such unused nodes then come into the domain at a later time (as may well be the case for sliding

meshes), the grid simply gets re-tagged (using some efficient algorithm), rather than regenerating

the whole component mesh from scratch, which would be costly. This makes the overset method

particularly attractive for sliding mesh simulations.

While there are clearly many benefits of using overset grids in a CFD code, the method is un-

fortunately not without challenges. Arguably the main issue with the overset method is enforcing

conservation at grid interfaces. CFD codes are based on conservation laws, hence global conser-

vation is of critical importance. However, standard linear interpolation for inter-grid data transfer

28

is generally non-conservative. This lack of conservation can often cause stability and/or accuracy

problems. Alternatives to linear interpolation have been developed for the overset method, that

attempt to preserve conservation from one grid to the next. However, fully conservative interface

treatments either involve costly regeneration of grids at each time-step, or are very difficult (if not

impossible) to implement in 3D. Simpler semi-conservative methods may be used as an alternative

(see Ref. [1]). Through the use of such methods, the overset grid method offers a powerful tool for

the simulation of flows involving complex geometries.

1.1 Numerical Techniques

A new computational code has been developed in this project, from the ground up. This code is

based on the steady-state, incompressible RANS equations, closed with a two-equation k − ε model

(the low-Reynolds number k− ε formulation of Launder and Sharma has been used for this purpose

[2]). A cell-centred, finite volume discretisation is used with SIMPLE pressure-velocity coupling

over a colocated grid arrangement. Intra-grid interpolations are carried out via a choice of a first-

order upwind, the second-order central-difference, or the third-order QUICK schemes. The RANS

governing equations are employed, as will be discussed in Chapter 3. Implicit under-relaxation is

employed in order to increase the diagonal dominance of the equations, which are solved iteratively

using the Alternating Direction Implicit (ADI) technique, via Thomas’ algorithm (ref. [3]). Internal

boundary conditions are dealt with via an inter-grid interpolation. Linear interpolation, or the

semi-conservative method of Tang et. al., [1], have been coded for this purpose.

1.2 Objectives of this Research

As outlined earlier, conservation at grid interfaces is one area of the overset method that is potentially

a cause for concern. It is therefore an important objective of this research to check if this concern

is justified, or if the non-conservative interface treatment of linear interpolation is sufficient. Semi-

conservative interface treatment will also be investigated.

The various overset algorithms available in the literature shall be evaluated and incorporated,

improved, or replaced into the present code so as to provide a complete overset formulation.

Another objective of the present research is to simulate practical engineering problems involving

29

complex geometries with overset meshes. This not only demonstrates the ability of the method in

dealing with such geometrical complexity, but also provides some understanding into the complex

flow physics such cases present.

1.3 Layout of this Thesis

In Chapter 2, a review of the current state of knowledge with respect to the overset method shall

be presented. Chapters 3 and 4 consider, respectively, the implementation details of a single-block

structured CFD code and the modelling of turbulence on this block. Chapter 5 then outlines the

extension of this single block formulation to the overset formulation developed in the present work.

Chapter 6 demonstrates the overset method applied to fairly simple test cases, which have been

highlighted in order to demonstrate specific features of the method. In Chapters 7 to 10 complex

geometrical cases are investigated, for which it is shown that the overset method gives solutions

that are typically in good agreement with experimental data, or where any discrepancies can be

attributed to shortcomings of the turbulence model. Test cases include the flow through a human

artery bifurcation, the flow over a multi-element airfoil and the flow around a wing-body junction

to name a few. Finally, in Chapter 11, some future work is suggested, and some concluding remarks

are made.

30

Chapter 2

Literature Review

The overset grid method was pioneered by Benek, Steger and Dougherty [4] in 1983, who were also

the first to coin the phrase ‘Chimera grid’. This name was given in reference to the monster of Greek

mythology, whose form is made up from parts of multiple animals. Since the original conception,

significant improvements have been made to the Chimera methodology, specifically in the areas of

automated grid tagging, and in conservative interface treatment. Different researchers have favoured

different approaches, often varying radically in their implementation. This section shall first outline

selected non-conservative interface treatments, including the original method of Benek et al.. We

then move on to some of the main schools of thought that have branched off from the original

Chimera grid method, that attempt to enforce conservation, highlighting both their advantages and

disadvantages. Finally, an alternative to the overset method that is equally well equipped in dealing

with complex geometries is investigated (namely the immersed boundary method).

2.1 Non-Conservative Interface Treatment

The original Chimera method used non-conservative linear interpolation of all variables to provide

boundary conditions on an overset grid. Benek et. al. [4, 5] demonstrated the method by solving

the discretised Euler equations for flow over an airfoil with a flap. Figure 2.1 shows the mesh used

for this problem, while Figure 2.2 shows a close up of the flap region.

Unfortunately, the results of Benek et. al. were not particularly satisfactory. Figure 2.3 shows

the pressure coefficient (CP) variation along both the airfoil and flap’s surface, with an angle of

31

Figure 2.1: The grid used by Benek et. al. to develop the Chimera grid scheme. Image from
[5].

Figure 2.2: A closeup of the flap region. Image from [5].

32

attack equal to 3◦, a flap deflection equal to 10◦, and a free stream Mach number equal to 0.6.

Figure 2.3: Pressure coefficient variation over an airfoil with flap. α = 3◦, β = 10◦ and
M∞ = 0.6. Image from [5].

In Figure 2.3, it can be seen that, by comparing the computational results (the solid and dashed

lines) with the experimental results (the symbols ‘•’ and ‘◦’), there is a significant overprediction of

pressure coefficient on the suction surface of both the airfoil and the flap. However, it is not clear as

to what extent the discrepancy is due to the Chimera grid’s non-conservative interpolation scheme.

It is expected that the majority of the discrepancy is down to the CFD code’s use of the inviscid

Euler equations as the governing equations, while the experimental results used air as the working

33

fluid which clearly has a non-zero viscosity.

Henshaw [6] developed a fourth order method for the solution to the Navier-Stokes equations on

overlapping grids. Henshaw used an interpolation that was based on Lagrange polynomials. The

method was applied to the 2D flow over a cylinder, and the 3D flow over a sphere, which both gave

continuous solutions from one grid to the next. Figure 2.4 illustrates the grids used in the flow over

the cylinder, and also plots contours of the horizontal velocity.

Figure 2.4: 2D flow over a cylinder simulated with overset grids and Lagrangian polynomial
interpolation. Image from [6].

Tang et. al. [1] show that the residual error of the pressure and velocities when using linear

interpolation fails to fall to as low a level as that of block-structured grids for a general overset

problem. Furthermore, the convergence rate when using overset grids with linear interpolation is

inferior (relative to an alternative interpolation method that Tang et. al. have developed, discussed

34

later). It has also been noted that the pressure ‘checkerboarding’ phenomenon of colocated grids

is more pronounced for linear interpolation, relative to that in single block or block-structured

grids (when pressure-smoothing, such as Rhie-Chow interpolation, is not used). The reason for this

has been identified as originating from the over-prescription of boundary conditions [1]. This in

itself would not be a problem if the truncation error were zero everywhere, for then the boundary

conditions for all the variables would be consistent with one another, and equal to the exact solution

to the continuous governing equations (excluding numerical round-off error). However, interpolation

does not guarantee consistent values at the boundaries, since truncation error will generally be non-

zero. As a result, conservation at grid interfaces cannot be assured and is generally not achieved. It

has been recognised that, conservation (amongst other criteria: e.g. an increase in net entropy of a

closed system, stability, consistency, etc.) is a necessary condition for a physically relevant solution

to be obtained (Lax, [7]). It is this non-conservation (particularly of the mass flux [1]) that causes

the error.

Several other non-conservative interpolation methods have been used by different authors, details

of which shall not be presented here. These alternatives are typically higher order interpolation

methods. However, since the underlying flow solver used here is second order, there is little to be

gained from the use of higher order interpolation methods. If fact, it will be shown presently that

the increased region of overlap that is required in order to implement higher order methods (due to

the increased interpolation stencil size) can actually be detrimental to solution continuity.

2.2 Conservative Interface Treatment

Despite the potential problems of non-conservative interface treatment, there have been several

authors who have reported that non-conservative interpolation methods give satisfactory results for

complex flows (e.g. Freitas et. al. [8], Fast et. al. [9], Basso et. al [10] and Chung et. al. [11]).

However, other authors (e.g. Tang et al. [1], Wang [12], Ge et. al. [13, 14]) conclude that such a

procedure is unsatisfactory, as it often results in a spurious, odd-even de-coupling to the pressure

field.

It is expected that the disparities between reported successful and unsuccessful simulations be-

tween different authors arises from the fact that in the limit of zero grid spacing (i.e. a continuous

field) any interpolation algorithm will be conservative (since in this limit, there is no interpolation

35

to be done). Therefore, when aspiring toward a grid independent solution, non-conservative in-

terpolation methods will give satisfactory results if using a sufficiently fine mesh. This is as was

reported by Freitas and Runnels [8], who used standard linear interpolation for all variables and

noted that it is possible to circumvent the problems associated with a non-conservative interface

treatment by refining their grid. However, it is not desirable to refine the mesh unnecessarily as the

additional computational costs can quickly become prohibitive. Alternative interpolation algorithms

have therefore been developed that attempt to preserve the conservative properties of the underlying

governing equations at the interface, without being prohibitively expensive. Some of these methods

shall now be addressed.

2.2.1 DRAGON Grids

Conceptually, the simplest method of ensuring conservation at internal grid interfaces is perhaps

the ‘Dragon Grid’ method. This method was originally developed by Liou & Kao [15], then later

extended into three dimensions by Liou et. al. [16]. In their method, conservation is ensured at

grid interfaces by eliminating the need for inter-grid interpolation altogether. The geometry is first

meshed in much the same way as for the overset scheme. Body-fitted grids depict the complex

nature of the geometry, while an efficient Cartesian grid fills the majority of the domain. A hole is

then cut into the overlap region of the background grid, which extends a few cells further out than

for an overset simulation, such that the grids are no longer overlapping (see Figure 2.5 (a)). The

gap between grids is then filled with an unstructured mesh that has faces aligned at the interface,

thereby ensuring the flux leaving the structured grid is equal to the flux entering the unstructured

grid (and vice versa). The resulting mesh is a hybrid mesh. Figure 2.5 illustrates the two step

generation procedure, with Figure 2.5 (a) showing the two user generated grids with the hole cut

into the background grid (automatically), and 2.5 (b) showing the final DRAGON grid.

The developers of DRAGON grid technology argue that, as the costly unstructured mesh is

only used for a small portion of the overall domain, the overall increase in computational costs

attributable to expensive unstructured meshes is minimal. The method also clearly preserves the

ease of grid generation that was found in the original Chimera scheme.

To demonstrate the effectiveness of DRAGON grid technology, Liou et al. [15] present the

complex DRAGON grid of Figure 2.6. Each letter is wrapped with a structured body-conforming

mesh, which cuts a hole into the Cartesian background mesh. The unstructured mesh that connects

36

Figure 2.5: 2D DRAGON grid generation. Image from [15].

the body-conforming mesh with the background mesh can be seen to occupy only a very small

portion of the overall domain. Figure 2.6 clearly demonstrates the potential of DRAGON grids to

mesh complex geometries.

Figure 2.6: DRAGON grid demonstrating the mesh over the letters CFD. Image from [15].

The authors then go on to solve the discretised Euler equations applied over the first letter

‘C’ from the DRAGON grid (i.e. the ‘F’ and ‘D’ grids are removed, presumably for reasons of

computational efficiency). The results they present show the time evolution of a shock moving from

left to right, toward the ‘C’. Pressure contours close up around the ‘C’ are shown in Figure 2.7.

From Figure 2.7 it can be seen that a continuous solution across the interface could be expected.

However, the authors fail to plot contours across the unstructured portion of the mesh so this is

hard to confirm.

37

Figure 2.7: Pressure contours around the letter ‘C’ using DRAGON grid technology. Image
from [15].

The extension of 2D DRAGON grids to three dimensions is a relatively straightforward step. It

is conceptually the same idea as that of the 2D grids; hence details shall not be repeated here. For

further information, the reader is directed toward Reference [16]. The grid shown in Figure 2.8 shows

a close up of a mesh used in the simulation of turbine blade film cooling. This figure demonstrates

the ability to mesh very complex 3D domains.

The main drawback of DRAGON grid technology is that, for sliding meshes, the unstructured

portion of the grid would have to be re-meshed repeatedly as time is marched on, as well as a

retagging of holes into the background mesh (as opposed to the Chimera scheme where only a

simple re-tagging is required). This could add up to a significant increase in computational costs.

Further disadvantages are found due to fact the underlying flow solver (and grid generator) must

be able to handle both structured and unstructured meshes. Not all codes have this flexibility built

into them already and to add such flexibility is not a trivial task. Hence adding DRAGON grid

capabilities to an existing code would likely be a major task.

38

Figure 2.8: A 3D DRAGON grid demonstrating the ability to mesh highly complex domains
as encountered in the film cooling of turbine blades. Image from [16].

2.2.2 Zonal Interface Generation

A similar methodology to that of DRAGON grids has been adopted by Wang [17], and was later

extended to allow for moving bodies (Wang, [12]). Wang’s method is named ‘Zonal Interface Gen-

eration’ (ZIG). Rather than converting the overlapped grids into a hybrid mesh (as was done for

DRAGON grids), Wang converts the overlapped grids into a block-structured mesh. Wang elimi-

nates the non-conservative properties of the original Chimera scheme by eliminating the need for

interpolation from grid to grid (as was also achieved for DRAGON grids). Figure 2.9 illustrates

the grids Wang used to demonstrate the ZIG method. A ‘major’ Cartesian grid (A) and a ‘minor’

curvilinear grid (B) are used. To ensure conservation, Wang generates an internal boundary, ΓBO

common to both grid A and grid B.

The first step of the ZIG algorithm consists of tagging each node of the major grid as a standard

discretisation node (marked ‘×’ in Figure 2.9), a cut cell (marked with a ‘+’), or an unused node

(marked with a ‘•’). Standard discretisation nodes (‘×’) are solved in the usual manner, while unused

nodes (‘•’) are not solved for at all, hence no further action on the part of the interface generator

is required at either of these types of point. For cut cells (‘+’), the cells are reconstructed such

that the cell faces of the major grid cut the cell faces of the minor grid where they intersect (and

vice versa). Consider the new cells ‘b-6-7-e’ and ‘5-6-7-8-9-f-g’ (as seen in Figure 2.9) generated

by this process. The flow variables immediately to the left and immediately to the right of the

face (QL and QR respectively) are then evaluated using either a constant reconstruction or a linear

39

Figure 2.9: ‘Zonal Interface Generation’.

reconstruction. For the constant reconstruction (a first-order reconstruction), QL is simply taken to

be the primitive variable values at the centre of ‘b-6-7-e’, and QR is taken as the primitive variable

values at the centre of ‘5-6-7-8-9-f-g’. For the linear reconstruction, information from neighbouring

cells is brought in to determine the local gradient of Q which is used to determine QL & QR to

second order accuracy with respect to grid spacing. Having found QL and QR, Wang employs the

approximate Riemann solver of Roe to find the numerical flux through each cut face (for details of

the Riemann solver see Ref. [18]).

Wang demonstrated the ability of the ZIG algorithm by simulating a slow moving shock moving

through grid interfaces, a particularly challenging simulation that non-conservative interface schemes

would have major difficulties with. The grids used in Wang’s simulation are shown in Figure 2.10.

Density contours for the moving shock problem are shown in Figure 2.11, where the shock is

moving from left to right. Comparisons are made between the original, non-conservative Chimera

(b), and the ZIG method (a). It can be seen from Figure 2.11 that the original Chimera scheme

develops instabilities that cause the erroneous dissipation of the shock. The ZIG method however,

resolves the moving shock through the interface reasonably well.

40

Figure 2.10: The grids used by Wang to simulate a slow moving shock problem. Image from
[17].

Figure 2.11: Density contours for moving shock problem at times t = 1 and t = 2 for the ZIG
method (a) and non-conservative Chimera (b). Image from [17].

41

The main problem with the ZIG method is that the CPU time associated with the interface

generation in 2D, is of the same order of magnitude as that of one time-step of the flow solver [17].

In 3D, Wang expects the interface generation to be much more resource intensive [17]. For non-

sliding meshes, this is not particularly problematic, however if the meshes were sliding, the interface

would need to be regenerated repeatedly and this could become prohibitively expensive (especially

in 3D). The extension of ZIG to three dimensions was apparently never carried out.

2.2.3 Conservative Interpolations

The previous conservative interface treatments mentioned (namely; DRAGON grids and the ZIG

method) required partial re-generation or reconstruction of the grids from one time-step to the next

(if sliding meshes are to be used). This is a costly procedure that would be best avoided if possible. If

a conservative interpolation method could be developed, the regeneration of grids could be avoided.

Berger presents a discussion of conservative interpolation in one spatial dimension and for specific

cases in two spatial dimensions, where the grids are aligned in specific ways. Her paper (Ref. [19])

discusses conservation issues for overlapping grids. The basic idea presented in [19] involves assuming

the interpolation coefficients are free parameters, and then deriving constraints on these parameters

that ensure conservation.

Berger notes that, for a conservative interpolation, it is necessary to interpolate the flux through

the internal boundary rather than the value of the variable directly. In one dimension (see Figure

2.12) Berger shows that a linear interpolation of the flux is conservative.

Figure 2.12: 1D grids used by Berger to demonstrate conservative interpolation. Image from
[19].

In two dimensions, the result is not so straightforward. Berger develops conservative interpolation

methods where the grids are aligned in specific ways, such that the problem is simplified to the extent

where a conservative interpolation may be performed. Figures 2.13 and 2.14 illustrate the problems

42

considered by Berger which are of increasing complexity.

Figure 2.13: 2D grid used by Berger to develop conservative interpolation. Image from [19]

Figure 2.13 considers the case where the grids are rotated by π/4 with respect to one and other,

and where the grid lines of one grid go through the corners of the other. In this case, it is shown that

the conservative interpolation method actually reduces to linear interpolation. In other words, linear

interpolation is conservative for this specific case. This follows from the fact that the interpolation

points lie at the cell centers of the donor cells.

Figure 2.14 considers a second, somewhat more complex situation, where the grids are rotated,

but the gridlines need not exactly go through the corners of the other grid. For this case, Berger

describes the restrictions to the interpolation weights that ensure global conservation. It is found

that, for conservative interpolation, it is necessary to use a 6-point interpolation stencil, which does

not fit into the finite volume method in a natural way.

Finally, Berger goes on to describe a general algorithm for 2D, but the details are lacking, and

it was apparently never implemented. Furthermore, numerical experiments were not conducted by

Berger in [19], so the success of the interpolation scheme is difficult to confirm. The extension of

Berger’s interpolation method to three dimensions would likely be prohibitively complex.

Chesshire and Henshaw extend on the preliminary work of Berger by generalising the 2D al-

gorithm to make it applicable to any number of arbitrarily arranged grids (Ref. [20]). Numerical

43

Figure 2.14: A more complex 2D interpolation problem, considered by Berger. Image from
[19]

experiments were conducted by simulating the slow moving shock problem on overlapping grids. The

governing equation they use is the viscous Burger’s equation rather than the complete Navier-Stokes

equations. Essentially they are making a simplification by solving a 1D governing equation, but on

2D grids. Burger’s equation is given in Equation 2.1.

∂u

∂t
+

1

2
u
∂u

∂x
= µ

∂2u

∂x2
(2.1)

The results they obtained from applying the conservative interpolation to the above-mentioned

problem are shown in Figure 2.15.

Chesshire and Henshaw computed the difference between the conserved discrete integral of u,

and the analytical integral of the exact solution, both integrated over the entire domain,. The

difference between these two quantities is representative of the error. The mean value of the error

was subtracted out, as this portion of the error is attributable to truncation error and computational

round off error. What remains is the conservation error. A plot of this conservation error, as a

function of time was presented by Chesshire and Henshaw (Ref. [20]), and is reproduced here as

Figure 2.16.

It can be seen from Figure 2.16 that the conservation error is below 3× 10−11 at all times. It is

therefore of negligible magnitude relative to the mean truncation error (3.26× 10−6). It can also be

44

Figure 2.15: Results of simulating the slow moving shock problem, using the viscous
Burger’s equation as a governing equation, and the conservative interpolation of Chesshire

and Henshaw. Image from [20].

45

Figure 2.16: Conservation error as a function of time. Image from [20].

seen that the error is largest at times t = 0 and t = 100. This is due to the fact that, at these times,

the shock is closest to the computational boundary; the error is higher in this case due to the large

truncation error in the discretisation of the boundary conditions, rather than due to conservation

of the interpolation scheme. At time t = 20, when the shock starts to cross the internal interface,

there is no notable jump in the conservation error. The conservation properties of the interpolation

scheme are therefore confirmed to be fully conservative.

That Chesshire and Henshaw chose to use the viscous Burger’s equation as the governing equa-

tion, rather than the full Navier-Stokes equations, is due to the fact the former equations offer

a significantly simpler problem to be solved. Extending the conservative interpolation considered

by Chesshire and Henshaw to the general case of solutions to the complete Navier-Stokes equa-

tions would likely involve difficulties, particularly in the over-prescription of boundary conditions.

Furthermore, the extension of this interpolation method to 3D would involve significant additional

complications.

46

2.2.4 Semi-Conservative Interpolations

The work of Berger [19], and Chesshire et. al. [20] has shown that a fully conservative interpolation

scheme is extremely difficult to implement, even for simple governing equations over 2D domains.

The development of a fully conservative interface treatment for the solution of the full Navier-Stokes

equations over 3D domains is prohibitively complex at present (and is likely to remain so). An

alternative semi -conservative interface treatment has been developed by Tang et. al. [1].

In their method, Tang et. al. derive a condition that must be satisfied for the exact conserva-

tion of mass. However, they note that the enforcing of the condition is extremely difficult (if not

impossible) to implement in 3D (as was also found by Chesshire and Henshaw). The method is

based on enforcing a second order accurate approximation to the condition, rather than the exact

condition. Since they enforce a discrete approximation to the condition, and not the exact condition,

the method is said to be semi conservative. Tang et. al. refer to their method as Mass-Flux Based

Interpolation, or MFBI.

Despite not being fully conservative, the MFBI method does prove to be very useful. Tang et.

al. show that the MFBI reduces the odd-even de-coupling found on colocated overset grids, relative

to linear interpolation (where both methods use no pressure smoothing in order to exagerate the

problem for demonstration purposes). Figure 2.17 shows the grids used by Tang et. al for the

simulation of a 3D unsteady flow in a cube cavity. The sub-domain, ΩA oscillates vertically with

time (W = cos(2πt)). The domain is closed, with the fluid inside being driven entirely by the moving

lid.

Figure 2.18 shows contours of pressure and two velocity components for a cross section through

the cube at the y = 0 plane, with a comparison between the MFBI and linear interpolation methods.

It can be seen from Figure 2.18 that the velocity field is very close to continuous across both grids.

However the pressure experiences strong odd-even decoupling in the case of linear interpolation, but

is significantly reduced by using the MFBI method.

Figure 2.19 shows the convergence histories of the pressure and velocities for the oscillating cavity

problem.

From Figure 2.19, it is evident that the residual falls to a lower level at each timestep for the MFBI

method relative to that of linear interpolation. This is the case despite using the same grids for each

case, and is due to the fact the conservation error is lower for the MFBI method, compared to the

47

Figure 2.17: The grids used for the simulation of 3D oscillating flow.

48

Figure 2.18: Pressure and velocity contours at time t = 0.25 and Re = 100. (a)MFBI; (b)linear
interpolation. Image from [1].

49

Figure 2.19: Convergence histories for the pressure and U-velocity residuals for three
timesteps. (SI=linear interpolation). Image from [1].

linear interpolation method.

The MFBI method has been applied by Ge and Sotiropoulos [13, 14] to a river flow around a

bridge foundation. Figure 2.20 shows the geometry and grids used in this case, from which it can be

seen that the former is complex, while the latter is not. The resulting flow stream traces are shown

in Figure 2.21.

Kangle and Gang, [21], use the MFBI method to simulate the flow over multi-element airfoils. It

is found that the method again offers improved convergence and slightly improved results (suggesting

that grid independence was not achieved in their study). Figure 2.22 shows the predicted pressure

coefficient over the surface of the multi-element configuration. It can be seen that the MFBI results

are closer to experiment data than the results obtained from using linear interpolation.

50

Figure 2.20: Geometry (above), and overset grids used in [13] for the flow around a bridge
foundation.

51

Figure 2.21: Flow stream traces obtained in [13] for the flow around a bridge foundation.

Figure 2.22: Surface pressure coefficient over a multi-element airfoil. Image from [21].

52

2.3 Alternative methods to the overset method in dealing

with complex geometries

An attractive alternative to the overset grid method is the immersed boundary method as proposed

by Peskin [22, 23]. In this method, a simple and efficient Cartesian mesh is used throughout the

entire domain (see Figure 2.23). The Cartesian mesh is generally non-conformal to the boundaries

of the geometry being considered (i.e. boundary Γb). Instead, the effects of the boundary Γb are

accounted for through modification of the governing equations. Since there is no requirement for

grids to be aligned to the geometry, the pre-processing step is simplified for arbitrarily complex

geometries.

Figure 2.23: Immersed boundary method example problem and grid. Image from [24].

To deal with the wall boundary conditions presented by Γb, modifications are made to the gov-

erning equations. These modifications take on the form of additional source terms in the momentum

and turbulence equations, with the aim of reproducing the effect of the boundary.

There are two distinct methods of dealing with immersed boundary conditions. The first im-

plementation involves applying a continuous forcing function to the governing equations, and then

discretising the result. The second option involves discretising the governing equations with no re-

gard to the immersed boundary, and then applying modifications in the vicinity of the immersed

boundary in an ad hoc manner, to account for its presence.

There are fundamental differences in these two methods. The former method has a strong

physical basis, whereas the latter method arguably demonstrates less rigour. Despite this, both

53

methods feature prominently, and both have associated advantages and disadvantages with their

use.

In the former, continuous approach, the immersed boundary can be modelled as a set of massless

points, connected to one another via ‘elastic fibres’, and tethered to a fixed anchor point (see Figure

2.24). A mixed Euler-Lagrangian approach is formulated, where the Navier-Stokes equations are

solved in the Eulerian domain, Ω, and the fluid-boundary interactions are tracked on a Lagrangian

domain.

Figure 2.24: The transfer of force to surrounding fluid nodes. Massless points are
represented by the white circles, and are connected by the blue ‘elastic fibres’. Shaded

region shows the region of influence of a point. Image from [24].

A forcing function, ~f , is added to the right hand side of the Navier-Stokes momentum equations

and is given by

fi(~x, t) =
∑
k

Fik(t)δ(~x− ~Xk) (2.2)

where ~Fk is the force density acting at point k (due to the tension in the elastic fibres, and due

to the tethers) and ~Xk is the position vector of the kth massless point. Since the location of the

massless points do not generally coincide with the grid nodes, the force is distributed to the fluid

via a smoothed-out discrete version of the Dirac δ-function. Some of the possible distributions of

the δ-function that have been used are illustrated in Figure 2.25.

Clearly a method of specifying ~F at each point k is required. To model the elastic behaviour of

54

Figure 2.25: Different approximations of the Dirac δ-function. Image from [24].

the immersed boundary, we have;

Fi(s, t)
ELASTIC =

∂

∂s
(Tτi) (2.3)

where T is the tension in the elastic fibres, and ~τ is the unit tangent. The tension in the elastic

fibres is obtained by relation to the deformation of the fibres through constitutive relations such as

the generalised Hooke’s law.

The restoring tethers can be modelled as springs. Each massless point is then thought to be

attached to its equilibrium position via this spring. The equilibrium position is usually taken as the

initial starting position of the massless points at time t = 0. The tether force is then given by

Fi(s, t)
TETHER = −κ [Xi(s, t)−Xi(s, 0)] (2.4)

where κ is the spring constant. The force ~FTETHER is the restoring force, driving the immersed

wall back to its original position as the fluid pushes it away. The final force ~F , for use in Equation

2.2, is then given by;

55

Fik =
∂

∂s
(Tτi)− κ [Xik(s, t)−Xik(s, 0)] (2.5)

The modulus of elasticity of the fibres (used to relate the tension in the fibres to their displace-

ment), and the spring constant, κ, are user defined parameters that can be selected to yield the

desired wall properties.

The solution procedure commences by solving for the flow-field at time t = 0. There will initially

be no forces ~F acting on the massless points since the immersed boundary is in its equilibrium

position. However, from the no-slip condition we know the immersed boundary wall must move

with the local fluid velocity. This fact can be used to update the position of the massless points

from one time-step to the next via

∂

∂t
Xi(s, t) = ui(~X, t) =

∫
ui(~x, t)δ(~x− ~X(s, t))d~x (2.6)

At the end of the first time-step, the immersed boundary will therefore move downstream by

distance U∞∆t, where U∞ and ∆t are the freestream velocity and time-step respectively. This

displacement will result in a restoring force, calculated via Equation 2.5. Equation 2.2 is then used

to distribute this force to the fluid, resulting in a source term in the Navier-Stokes equations. In an

iterative manner, this will lead to the desired result of a simulation of the flow around the immersed

boundary.

While this method is well suited for simulating flow over elastic boundaries, using the method to

simulate the flow around rigid bodies poses many challenges. In the rigid limit, the constitutive laws

used for the elastic boundaries are ill-posed. While it is theoretically possible to treat the system as

strictly elastic, but with a very high κ value, this can often lead to stability issues [25]. There are

alternative immersed boundary formulations that are better suited to rigid body simulations, but

they will not be considered here. For further information, see References [24, 26].

To demonstrate the potential of the immersed boundary method, Yun et. al. [27] performed

an LES simulation of the turbulent flow past a sphere at Re = 104. Figure 2.26 shows computed

particle tracks, with comparison to an experimental flow visualisation.

56

Figure 2.26: Turbulent flow over a sphere. (a) Immersed boundary LES particle tracks. (b)
Experimental flow visualisation. Image from [24].

From Figure 2.26, it is apparent that the computed flow field is qualitatively similar to that of the

experiment. The vortex structures are similar in form from computation to experiment. Table 2.3

shows comparisons of average base pressure coefficient CP , average drag coefficient CD and Strouhal

number St from different computations or experiments. From Table 2.3 it is apparent that the

LES immersed boundary method seems to perform just as well as a detached eddy simulation with

body-conformal grids for this case. It is also evident that the computed vortex shedding frequency

(f ∝ St) largely agrees with that of experimental data, to within a few per cent.

CP CD St

LES with Immersed Boundary [27] −0.274 0.393 0.167
Experiment. Kim et. al. [28] 0.16
Experiment. Sakamoto et. al. [29] 0.18
Detached eddy simulation with body
conformal grids. Constantinescu et. al.
[30]

−0.275 0.393 0.195

Table 2.1: Predicted and experimental values of average base pressure coefficient (CP),
average drag coefficient(CD) and Strouhal number St for the flow over a sphere at Re = 104

from different computations/experiments.

Mittal et. al., [31], simulated the free-fall of five blocks through a fluid, with arbitrary initial ar-

rangement, using the immersed boundary method. Figure 2.27 shows the position of the blocks and

computed pressure contours at three different time-steps. This simulation would be very time con-

suming to conduct using an unstructured grid simulation since the grid would have to be regenerated

at each time-step.

Finally, Fauci and McDonald used the immersed boundary method to perform a study on the

motility of sperm cells [32]. They noted that despite the simplistic two-dimensional simulations

57

Figure 2.27: The free-fall of 5 blocks through a fluid. (a) Initial stage. (b) Intermediate
stage. (c) final stage. Image from [31].

they performed, the qualitative features of their simulations (such as the cell accumulation around

walls and the phase locking of neighbouring cells flagellum) matched experimental observations.

Figure 2.28 illustrates the velocity vectors induced by two cells swimming in a channel, bounded by

elastic walls. This figure demonstrates the immersed boundary method’s ability to model complex

geometrical shapes involving fluid-structure interaction.

The three different immersed boundary simulations outlined above (the flow over a sphere, the

free-fall of five blocks and the swimming of sperm cells) demonstrates the potential of the immersed

boundary method. The method clearly has a wide range of applicability and also has the advantage

of being easy to implement (Mittal et. al. note that it would be possible to implement the method

into an existing CFD solver, within a matter of weeks [24]).

Clearly there are many advantages associated with the immersed boundary method. However,

one major disadvantage of the method is that, relative to the overset method, the number of grid

nodes required to reach a grid independent solution is often significantly higher. With reference to

Figure 2.23a, for a simulation with characteristic length L, and boundary layer thickness δ, it may

be required to provide an average grid spacing of at least ∆n and ∆t in the normal and tangential

directions to the body respectively. In this case, for a body-fitted grid, the number of grid nodes

required for a grid independent solution will scale as (L/∆t)(δ/∆n), whereas for a Cartesian grid,

the number of nodes required scales as (L/∆n)2. Assuming that ∆t ∝ L and ∆n ∝ δ, we can note

that the ratio of the number of nodes required in Cartesian grids to body-fitted grids will scale

as (L/δ)2. According to Schlichting and Gersten, [33], the ratio (L2/δ2) increases linearly with

Reynolds number for laminar flows. Hence, as the Reynolds number is increased,the number of

58

Figure 2.28: The simulation of sperm cells swimming in a channel with elastic walls. Image
from [32].

59

grid nodes required will increase at a greater rate for the immersed boundary method than for the

overset method. This result is also intuitively obvious since body-fitted grids usually employ high

aspect-ratio cells to efficiently deal with near-wall regions. In the immersed boundary method this

is not possible since the grid is generated with little or no regard to the location or orientation of

any immersed boundaries.

It is clear that the immersed boundary method does offer an attractive way of dealing with

complex geometries. However, due to the larger computational grids that are often required (relative

to the overset method), and due to issues surrounding stability in the rigid limit, the immersed

boundary method is not particularly well suited to all classes of problems. However, a hybrid

immersed-overset methodology would seem to be a powerful tool in dealing with a wide range of

complex problems.

2.4 Conclusion

Several different methods for dealing with overset grids have been outlined in this literature review.

It has been noted that fully conservative interface treatment is either too costly when using sliding

meshes, or is very difficult to implement. Semi-conservative methods offer an attractive compromise

between accuracy and simplicity. The MFBI method is one such semi-conservative interpolation

method that is very easy to implement in two or three spatial dimensions. It has been shown that,

for a variety of cases, the MFBI method performs better than using linear interpolation [1]. It seems

to be that the MFBI offers the best available method for dealing with the interface conservation

issues at present. Numerical details of the MFBI method shall be considered in Chapter 4.

60

Chapter 3

Numerical Aspects of a Structured

CFD Code

3.1 Introduction

The equations that govern the physics of a fluid flow are the Navier-Stokes equations, and are

presented below (using compact tensor notation, with implied summation over repeated indices), for

a Cartesian reference frame:

∂ρ

∂t
+

∂

∂xj
[ρuj] = 0 (3.1a)

∂

∂t
[ρui] +

∂

∂xj
[ρuiuj + pδij − τji] = 0 i = 1, 2, 3 (3.1b)

∂

∂t
[ρe0] +

∂

∂xj
[ρuje0 + ujP + qj − uiτij] = 0 (3.1c)

where δij is the Kronecker delta (δij = 1 if i = j and δij = 0 otherwise), τij is the viscous shear

stress tensor, qi is the local heat-flux vector, and e0 is the total energy (e0 = CvT + 1
2ukuk).

Equations 3.1 are simply statements of conservation. They can be derived by considering the

conservation of mass over an infinitesimal fluid element (giving Equation 3.1a), and by applying

Newton’s second law of motion and the first law of thermodynamics over the same fluid element

(giving Equations 3.1b and 3.1c respectively). Equations 3.1a, 3.1b and 3.1c are referred to as the

61

continuity condition, the momentum equations (with the i index being cycled through to generate

a separate equations for the x, y and z directions), and the energy equation respectively.

The Navier-Stokes equations are coupled, non-linear partial differential equations which have no

general analytical solution. Traditionally the only way of gaining useful analytical information from

the Navier-Stokes equations has been to reduce the equations to a linear form by making several

simplifying assumptions. For example, by neglecting viscosity, the Euler equations are obtained;

the Euler equations can then be further simplified by neglecting terms describing vorticity, yielding

the full potential equations. Finally, the potential equations can be linearised by assuming small

perturbations to the flow field (i.e. by neglecting second order and higher terms). The linearised

equations can then be solved analytically. This procedure has indeed provided great insights into

the underlying physics of fluid flow. However, the simplifying assumptions do not fully depict the

physics of real-world flows, and in most cases the application of linearised equations to engineering

problems is inappropriate. For example, the application of the potential equations to a body (of

arbitrary shape) in an inviscid flow field leads to the erroneous prediction of zero drag. This is

known as d’Alembert’s paradox.

The desire for detailed, quantitative information on complex, turbulent, three-dimensional flows,

as is typically encountered in real-world circumstances, cannot be satisfied through analytical solu-

tions. Before the advent of the modern computer, the only option available to the fluid-dynamicist

was to gather flow data through experiments. In more recent times, as the computer has become

increasingly commonplace, the field of Computational Fluid Dynamics (CFD) has evolved, and is

now frequently used in conjunction with experiment.

CFD involves the replacement of the integrals and partial derivatives found in the governing

equations with discretised algebraic forms. These algebraic equations are then solved numerically

on a computer to obtain numbers at each discrete point. The numbers are representative of the

three velocity components, the pressure, the temperature and the density at each node, as well as

any other problem dependent variables that may be solved for. In order to close the set of equations

3.1, it is generally necessary to relate the local pressure to the local fluid density and temperature.

Empirical relations may be used for this purpose, such as the ideal gas law, with the local fluid

temperature and density being found via the energy equation and continuity condition respectively.

It is worth briefly noting that, while the Navier-Stokes equations are applicable to a very wide

variety of fluid flows, the equations themselves are not universally applicable. The momentum

62

equations are based on Newton’s second law, which has been conclusively demonstrated to be an

incomplete picture of our physical universe through Einstein’s relativity theories. That said, rela-

tivistic effects seldom become even close to significant for nearly all conceivable flows that may be

of interest. However, particularly for astrophysical flows, the effects are sometimes important.

A further physical approximation that is built into the Navier-Stokes equations is that the fluid

behaves as a continuum. Hence, where discrete molecular effects are important, real fluids (made out

of discrete molecules) cannot be modelled through the use of the Navier-Stokes equations. At micro-

scopic and mesoscopic scales, these molecular effects are always important and need to be modelled

via the use of alternative governing equations (e.g. the Boltzmann equation). Even at macroscopic

scales, molecular effects are often important. For example, tracking the interface between a liquid

and a gas (a molecular phenomena) is particularly challenging for a Navier-Stokes solver. One al-

ternative to a Navier-Stokes solver is to use the lattice Boltzmann method, for example1. Through

the use of the lattice Boltzmann method, the interface tracking is natural, and is particularly easy

to achieve.

Despite these inadequacies in the Navier-Stokes equations, the equations are applicable to such

a wide variety of different flow situations that they can safely be used as the governing equations of

a general purpose CFD code.

The main attraction of CFD is that it can deal with the full non-linear form of the governing

equations without resorting to any additional geometrical or physical approximations (other than

those already built into the Navier-Stokes equations). In practice however, for turbulent flows

physical approximations are (almost) invariably made. Using the full Navier-Stokes equations to fully

resolve all turbulent scales (known as a direct numerical simulation (DNS)) is usually prohibitively

expensive by todays computational standards. However, in theory, no physical approximations are

necessary. Only numerical discretisation approximations need be made, which can be controlled

to within the desired accuracy by using a sufficiently fine mesh (provided sufficient computational

resources are available). CFD therefore enables the simulation of highly complex flows that could

not be handled analytically.

CFD should not be thought of as a replacement for experiment, but rather as an accompaniment

to experiment. It is still necessary to conduct some experiments to verify the CFD results. As

1The lattice Boltzmann method is a relatively new, and rapidly expanding branch of CFD which simulates macro-
scopic flow physics via the effects of multiple mesoscopic collisions between fictive particles. For further details of the
method, the reader is referred to the very interesting review paper by Chen and Doolen, [34]

63

is encapsulated by Charles Babbage in the quote that follows, if one puts erroneous input into a

computer (in this case, a CFD code), the output may well be far from physical. Experiments are

therefore often used to provide boundary conditions at the edge of the computational domain that

may otherwise be unknown.

On two occasions I have been asked, - “Pray, Mr. Babbage, if you put into the machine

wrong figures, will the right answers come out?”... I am not able rightly to apprehend

the kind of confusion of ideas that could provoke such a question.

Charles Babbage

In the sections that make up the remainder of this chapter, details of the finite volume discreti-

sation technique shall be presented. The finite volume method is frequently used in CFD codes as

it is arguably better suited than other discretisation methods within a CFD framework, primarily

due to the rigorous enforcing of conservation over each grid cell. For this reason, the finite volume

method was used in the present study. A solution algorithm that allows for solutions to the com-

plete Navier-Stokes equations shall also be presented in the later sections of this chapter (namely

the SIMPLE algorithm).

3.2 Physical approximations employed in the present code

While it is true that no physical approximations of the fluid flow are strictly necessary (other than

those already built into the governing equations), some physical approximations are usually made

in the interests of computational efficiency. For example, for a wide variety of flows, compressibility

effects are negligible (i.e. the density of the fluid is near uniform throughout). Water, for example,

has a compressibility of 4.6 × 10−10Pa−1 at a temperature of 299◦K and a pressure of 1bar,[35].

This compressibility decreases further with increasing pressure, hence, for an increase in density of

just 1%, the water would have to be pressurised to in excess of 20MPa. To put this into perspective,

this pressure is encountered at a water depth of roughly 2km. For nearly all practical applications,

the compressibility of water can therefore be neglected. The compressibility of other liquids is also

generally so small that is can be neglected for practical flow simulations.

For gases, where compressibility is orders of magnitude higher than that of liquids, this is not

necessarily the case. However, even for gases, if the Mach number is low, compressibility effects will

64

be small. As a general rule of thumb, for Mach M <∼ 0.3, compressibility effects can usually be

considered negligible.

For flows where the effects of compressibility are deemed negligible, the density of the fluid can

be treated as a constant, and the pressure field is determined from the velocity field, via the use of a

pressure-velocity coupling algorithm (as will be discussed further in Section 3.5), rather than being

linked to the density and temperature fields. The use of the energy equation therefore becomes

redundant (except in cases involving heat transfer, in which case the energy equation is solved for

the temperature field, and the energy equation is decoupled from the other flow equations, or is only

loosely coupled via a temperature dependent density). This incompressibility assumption therefore

significantly reduces the complexity of the problem being dealt with. This assumption has been

made in the present study, hence the code presented here is applicable only for incompressible flows,

of which there are many.

A further physical assumption made in the present study is that the working fluid is a Newtonian

fluid (that is, the viscous shear stress is proportional to the strain rate). For a Newtonian fluid, the

viscous shear stress, τij , is given by Equation 3.2. Note that, owing to the continuity condition for

incompressible flows, the second term in Equation 3.2 is identically zero.

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

δij (3.2)

Physical approximations to turbulence have also been made in the present study, as to fully

resolve all turbulent scales in both space and time would be prohibitively expensive. The details of

the physical modelling of turbulence that has been employed are sufficiently lengthy to warrant the

use of a separate chapter, and are therefore postponed until Chapter 4.

One final physical assumption has been employed in the present code, which is that the velocity

and pressure fields do not vary with time. Time derivatives are therefore zero, and the code is hence

applicable only to steady-state problems.

65

3.3 The Finite Volume Method

The finite volume method commences by splitting up the overall domain into a number of smaller

cells through the use of a grid. To demonstrate the method, a simple Cartesian grid shall initially be

considered. The extension from a Cartesian grid to a general, non-orthogonal grid is straightforward

in concept (but detailed in the workings) and shall be considered in a later section. The method shall

be presented using the steady state version of Equation 3.1b as the governing equation, with the

index i set equal to 1 (i.e. the u-momentum equation with time derivatives neglected). It is assumed,

for the time being, that the pressure field p, and the v and w velocity components are known at each

grid node in this analysis, and that one is solving for the unknown variable u (i.e. the governing

equation is decoupled). Methods for coupling the momentum equations and the continuity equation

will be dealt with in a later section. Throughout this thesis, the standard CFD nomenclature for

referencing variable values at faces and nodes shall be used, as adopted by most CFD textbooks

(see for example Reference [36]). Figure 3.1 illustrates the use of this nomenclature. Values at cell

faces are denoted with lowercase ‘n’, ‘s’, ‘e’, ‘w’, ‘t’ and ‘b’ for the north, south, east, west, top and

bottom faces respectively. Uppercase letters are used to denote values at surrounding cell centres,

and the centre of the current cell is denoted as point P.

3.3.1 Basic Discretisation

In the finite volume method, the governing equation(s) is (are) integrated over each control volume.

For the momentum equations, this gives;

∫∫∫
V

∂

∂xj
[ρuiuj] · dxdydz =

∫∫∫
V

∂

∂xj
[−pδij + τij] · dxdydz (3.3)

In Equation 3.3, the left hand side represents convective fluxes, the first term of the right hand

side is a source term arising from the pressure gradient, and the remainder of the right hand side

represents the diffusive fluxes.

The volume integrals of the convective and diffusive flux terms are converted into surface integrals

through the use of the divergence theorem, leading to the following (after substitution of expression

3.2 for the viscous shear stress, and summing over the repeated index);

66

Figure 3.1: A typical three-dimensional control volume illustrating the standard CFD
nomenclature used for referencing surrounding variables.

[∫∫
(ρuu) dydz

]e
w

+

[∫∫
(ρuv) dxdz

]n
s

+

[∫∫
(ρuw) dxdy

]t
b

= −
∫∫∫

V

∂p

∂x
dxdydz +[∫∫

µ
∂u

∂x
dydz

]e
w

+

[∫∫
µ
∂u

∂y
dxdz

]n
s

+

[∫∫
µ
∂u

∂z
dxdy

]t
b

+[∫∫
µ
∂u

∂x
dydz

]e
w

+

[∫∫
µ
∂v

∂x
dxdz

]n
s

+

[∫∫
µ
∂w

∂x
dxdy

]t
b

(3.4)

To evaluate the surface integrals in Equation 3.4 exactly, it would be necessary to know the

value of the integrand at all locations on the faces. However, this information is not available as

only nodal values of variables are computed, hence discrete approximations have to be made. The

surface integrals are first approximated in terms of values at a point or points on the cell’s face, and

these face values are interpolated from nodal values.

The midpoint rule provides a simple second order approximation to the surface integrals. In the

mid-point rule, the mean value of the integrand is assumed to be equal to its value at the face centre.

The integral is therefore taken as the integrand’s value evaluated at the centre of the face, multiplied

by the face area. Higher order integration schemes, such as the fourth-order Simpson’s rule can be

used but this complicates the code as the integrand (i.e. the flux) would need to be evaluated at

multiple locations on the face. There is also little advantage to be gained from using higher-order

67

schemes unless higher-order schemes are also used elsewhere in the code, since the overall order of

the discritisation will be equal to the lowest order of each of the component schemes used. Due to

the significant complexity involved in implementing these higher order schemes, the midpoint rule

was used.

Using the midpoint rule, the convective flux terms (i.e. the first three terms of Equation 3.4) are

approximated as follows:

[∫∫
(ρuu) dydz

]e
w

+

[∫∫
(ρuv) dxdz

]n
s

+

[∫∫
(ρuw) dxdy

]t
b

≈ [ρuu∆y∆z]
e
w + [ρuv∆x∆z]

n
s + [ρuw∆x∆y]

t
b

= (ρue∆y∆z)ue − (ρuw∆y∆z)uw +

(ρvn∆x∆z)un − (ρvs∆x∆z)us +

(ρwt∆x∆y)ut − (ρwb∆x∆y)ub

=Ceue − Cwuw + Cnun − Csus + Ctut − Cbub (3.5)

where the C’s are the mass fluxes through the relevant faces. The values of u at the cell face

centres are obtained through interpolation (details of suitable interpolation methods are presented

in section 3.3.2). The mass fluxes (C) at the cell faces are typically evaluated through a central

difference interpolation (linear averaging) from the two nodal values either side of the face (e.g.

nodes P and E for the east face, and similarly for other faces).

Again using the midpoint rule, but this time applied to the diffusive flux terms, the following is

obtained:

[∫∫
µ
∂u

∂x
dydz

]e
w

+

[∫∫
µ
∂u

∂y
dxdz

]n
s

+

[∫∫
µ
∂u

∂z
dxdy

]t
b

+[∫∫
µ
∂u

∂x
dydz

]e
w

+

[∫∫
µ
∂v

∂x
dxdz

]n
s

+

[∫∫
µ
∂w

∂x
dxdy

]t
b

≈[
µ
∂u

∂x
∆y∆z

]e
w

+

[
µ
∂u

∂y
∆x∆z

]n
s

+

[
µ
∂u

∂z
∆x∆y

]t
b

+[
µ
∂u

∂x
∆y∆z

]e
w

+

[
µ
∂v

∂x
∆x∆z

]n
s

+

[
µ
∂w

∂x
∆x∆y

]t
b

(3.6)

68

In order to fully evaluate the diffusive flux terms on the right hand side of Equation 3.6, it is

necessary to express the derivatives in terms of the values of the variables at the nodal locations. By

assuming a linear variation of u between nodes P and E, the gradient on the faces can be evaluated

using a central difference. This is a suitable approximation for diffusive fluxes as it is consistent

with diffusion acting homogeneously in all directions since there is equal weighting applied to both

the upstream and downstream nodes. Using central differences to approximate the gradients, the

following expression for the diffusive fluxes is obtained:

[
µ
∂u

∂x
∆y∆z

]e
w

+

[
µ
∂u

∂y
∆x∆z

]n
s

+

[
µ
∂u

∂z
∆x∆y

]t
b

+

[
µ
∂u

∂x
∆y∆z

]e
w

+

[
µ
∂v

∂x
∆x∆z

]n
s

+

[
µ
∂w

∂x
∆x∆y

]t
b

≈

(2µ∆y∆z)e
uE − uP

∆x e
− (2µ∆y∆z)w

uP − uW
∆x w

+

(µ∆x∆z)n
uN − uP

∆y n

− (µ∆x∆z)s
uP − uS

∆y s

+

(µ∆x∆y)t
uT − uP

∆z t
− (µ∆x∆y)b

uP − uB
∆z b

+

(µ∆x∆z)n
vN − vP

∆y n

− (µ∆x∆z)s
vP − vS

∆y s

+

(µ∆x∆y)t
wT − wP

∆z t
− (µ∆x∆y)b

wP − wB
∆z b

(3.7)

Up to this point, the convective and diffusive flux terms of Equation 3.3 have been discretised.

What remains is the source term which requires a volume integration over the control volume. The

volume integral is equal to the mean value of the integrand throughout the volume, multiplied by

the cell’s volume. However, the mean value of the integrand throughout the volume needs to be

approximated since an exact evaluation would require the integrand to be known at all locations

throughout the volume. The simplest method of achieving this is to assume the mean value of the

integrand to be its value at the cell centre. This enables the source term to be approximated by the

following;

−
∫∫∫

V

∂p

∂x
dxdydz ≈ −

(
∂p

∂x

)
P

∆x∆y∆z

≈ − (pe − pw) ∆y∆z (3.8)

69

Gathering the results of Equations 3.5, 3.7 and 3.8, the final form of the discretised u momentum

equation is obtained, and is presented below as Equation 3.9.

Ceue − Cwuw + Cnun − Csus + Ctut − Cbub = − (pe − pw) ∆y∆z+

(2µ∆y∆z)e
uE − uP

∆x e
− (2µ∆y∆z)w

uP − uW
∆x w

+

(µ∆x∆z)n
uN − uP

∆y n

− (µ∆x∆z)s
uP − uS

∆y s

+

(µ∆x∆y)t
uT − uP

∆z t
− (µ∆x∆y)b

uP − uB
∆z b

+

(µ∆x∆z)n
vN − vP

∆y n

− (µ∆x∆z)s
vP − vS

∆y s

+

(µ∆x∆y)t
wT − wP

∆z t
− (µ∆x∆y)b

wP − wB
∆z b

(3.9)

3.3.2 Intra-Grid Interpolation Practices

Values of u at the cell face centres are required for the convection terms in equation 3.9. These are

obtained through interpolation from nodal values. Numerous different interpolation methods are

available, some of which shall be presented in this section.

Linear Interpolation: The Central Difference Scheme

To find the value of u on the east face (ue), a linear variation of u from node E to node P can

be assumed. This is equivalent to using a central difference scheme (CDS). At the east face, for a

Cartesian grid, the CDS gives;

ue = uEλ+ uP (1− λ)

where λ is the linear interpolation factor, defined as;

λ =
xe − xP
xE − xP

To assess the accuracy of the CDS, a Taylor’s series expansions can be conducted. By conducting

a Taylor’s series expansion for uP about the point e, the following is obtained;

70

uP = ue +

(
∂u

∂x

)
e

(xP − xe) +

(
∂2u

∂x2

)
e

(xP − xe)2

2
+O

(
∆x3

)
(3.10)

A second Taylor series expansion, this time for uE about the point e yields;

uE = ue +

(
∂u

∂x

)
e

(xE − xe) +

(
∂2u

∂x2

)
e

(xE − xe)2

2
+O

(
∆x3

)
(3.11)

Multiplying Equation 3.10 by (1− λ) and 3.11 by λ, then summing the results yields;

ue = uEλ+ uP (1− λ) +O
(
∆x2

)
(3.12)

In the CDS, only the first two terms of the right side of Equation 3.12 are retained. The leading

truncation error term is therefore proportional to ∆x2. The CDS is hence second order accurate

with respect to the grid spacing.

The second order accuracy of the CDS may seem desirable as a more accurate solution can be

obtained with a coarser mesh (relative to a first order scheme). However, when the convection terms

in the governing equations are large relative to the diffusion terms (as is the case for most flows,

excluding those at very low Reynolds number), the coefficients of u in the discretised governing

equation (Equation 3.9) may become negative, meaning an increase in uE could lead to a decrease

in uP , for example. This is unphysical. The source of this erroneous result originates from the fact

the convection process is directional, whereas the CDS applies equal weighting to both upstream

and downstream nodes rather than giving greater weighting to upstream nodes. This can manifest

itself in the form of unphysical solutions where the solution at node P may lie outside the results

at the surrounding nodes (i.e. the solution may be unbounded). Around steep gradients, this is

evident as under-shoots and over-shoots, or ‘wiggles’ that can be seen in contour plots. The central

difference scheme has therefore not been used within the present study.

71

Upwind Difference Scheme

To overcome the transportive issues surrounding the CDS, a first order Upwind Difference Scheme

(UDS) can be used. This scheme is unconditionally bounded. In the first order UDS, the value of

ue is taken as;

ue =

uP if Ce > 0

uE if Ce < 0

By doing a Taylor’s series expansion of uP or uE (depending on the flow direction) about the

point e, the order of the scheme can be determined. The Talyor’s series expansions have already

been conducted in the evaluation of the order of the CDS, and were presented as Equations 3.10 and

3.11 respectively. From these equations, it can be seen that only the first term of the expansion is

retained. The leading truncation error is therefore of order O (∆x). Hence the scheme is first order

accurate with respect to grid spacing.

Since the leading error term is a multiple of a first derivative, it acts to augment the viscous flux,

which is also a multiple of a first derivative. The error is therefore described as ‘numerical diffusion’.

Viscosity tends to have the effect of damping out disturbances in the flow, and is stabilising. The

UDS therefore achieves its stability by being diffusive in nature.

By giving greater weighting to the upstream node (all of the weighting in fact), the UDS provides

stable, bounded results that are transportive, but the accuracy is not particularly attractive (first

order). The UDS scheme is often used in the first few iterations of a CFD simulation where its stable

nature enables a better estimate than the initialisation to be obtained. Once a reasonable first-order

approximation to the flow field is obtained (which is presumably a much better approximation than

the initial guessed values were), a higher order scheme can be switched to in order to obtain more

accurate results.

QUICK - Quadratic Upwind Interpolation for Convective Kinematics

Rather than assuming a linear variation of u from E to P , Leonard, [37] proposed a quadratic

variation. To fit a quadratic curve, three points are required to fully define the curve. When finding

ue, we have nodes P and E which come naturally. The third point is selected as EE if Ce < 0, or

as W if Ce > 0. This gives the upwind bias that is required for the scheme to be transportive. The

72

QUICK scheme gives for the east face;

ue =

uP + g1 (uE − uP) + g2 (uP − uW) if Ce > 0

uE + g1 (uP − uE) + g2 (uE − uEE) if Ce < 0

where g1 and g2 are geometric quantities, and are defined by:

g1 =

(xe−xP)(xe−xW)
(xE−xP)(xE−xW) (Ce > 0)

(xe−xE)(xe−xEE)
(xP−xE)(xP−xEE) (Ce < 0)

; g2 =

(xe−xP)(xE−xe)

(xP−xW)(xE−xW) (Ce > 0)

(xe−xE)(xP−xe)
(xE−xEE)(xP−xEE) (Ce < 0)

To assess the accuracy of the QUICK scheme, Taylor’s series expansions for uP and uE , in

addition to either uW or uEE (depending on flow direction), can be conducted about the point e.

The first two of these expansions have already been conducted as Equations 3.10 and 3.11 and are

repeated below. For the third expansion, we shall assume a positive flow velocity, and hence conduct

an expansion for uW ;

uE = ue +

(
∂u

∂x

)
e

(xE − xe) +

(
∂2u

∂x2

)
e

(xE − xe)2

2

+

(
∂3u

∂x3

)
e

(xE − xe)3

6
+O

(
∆x4

)
(3.13)

uP = ue +

(
∂u

∂x

)
e

(xP − xe) +

(
∂2u

∂x2

)
e

(xP − xe)2

2

+

(
∂3u

∂x3

)
e

(xP − xe)3

6
+O

(
∆x4

)
(3.14)

uW = ue +

(
∂u

∂x

)
e

(xW − xe) +

(
∂2u

∂x2

)
e

(xW − xe)2

2

+

(
∂3u

∂x3

)
e

(xW − xe)3

6
+O

(
∆x4

)
(3.15)

73

For a uniform grid, the coefficients of the nodal values of u happen to be 3
8 , 6

8 and − 1
8 for

the downstream node, the first upstream node and the second upstream node respectively. By

multiplying Equation 3.13 by 3
8 , Equation 3.14 by 6

8 and Equation 3.15 by − 1
8 , then summing the

results, the following is obtained;

ue =
6

8
uP +

3

8
uE −

1

8
uW −

3 (∆x)
3

48

(
∂3u

∂x3

)
e

+O
(
∆x4

)
(3.16)

In the QUICK scheme, only the first three terms to the right of Equation 3.16 are retained. The

leading error term is therefore proportional to (∆x)
3
. The scheme is hence said to be third order

accurate with respect to grid spacing.

Third order accuracy is sufficient for the majority of engineering problems. In fact, it makes

little sense to use higher order schemes if the second order midpoint rule is used to discretise the

integrals. Unless a higher order integration method is used, the overall accuracy will be limited to

the accuracy of the integration scheme. As already mentioned, higher order integration schemes are

complex to implement. Also, higher order interpolation schemes have large computational stencils.

Hence the QUICK scheme, coupled with the midpoint rule, offers an attractive compromise between

complexity and accuracy. It is also transportive as it has an upwind bias, and hence is more suitable

than using a central difference scheme for general fluid flow problems.

UMIST Scheme

The main problem with the QUICK scheme is that the value of ue may lie outside of the values

at uE and uP . The value is said to be unbounded in such circumstances. This is particularly

problematic when modelling turbulence, where the turbulent parameters (e.g. k and ε) are required

to be positive. A negative value for such parameters would have no physical meaning.

If uEE > uE > uP , or if uW < uP < uE , u is said to be locally monotonic and QUICK

interpolation is guaranteed to be bounded. The UMIST scheme therefore uses a variant of QUICK

interpolation in this case. However, if u is not monotonic (e.g. if uW > uP < uE), boundedness can

not be assured. In such cases, the UMIST scheme defaults to the guaranteed bounded first-order

upwind difference scheme.

Where the flow is monotonic, the third order QUICK scheme is used. The first-order scheme is

74

only used where it is necessary to achieve boundedness. Hence, the UMIST scheme is mostly of third

order accuracy, and it is always bounded. Lien and Leschziner (Ref. [38]) present further details of

the scheme.

3.4 Solution Procedures

Now that the governing equation has been discretised, and that suitable intra-grid interpolation

methods have been identified, the next problem is to actually solve the resulting set of algebraic

equations (i.e. Equation 3.9). To assist with this matter, after approximating the cell face values

of u via one of the above methods, Equation 3.9 can be rewritten as follows:

APuP =
∑
m

Amum + S (3.17)

where the A’s are the coefficients associated with the nodal values of u, and S is the source term which

contains all terms that cannot be absorbed into the A coefficients. The summation is conducted

over all nodes that make up the computational stencil (e.g. nodes N, S, E, W, T and B).

In practice, the source term is usually linearised by splitting it into solution dependent and

independent terms, denoted SP and Su respectively. SP is then subtracted from the leading diagonal

AP in order to linearise the system and enhance convergence. To ensure diagonal dominance of

the system is preserved, only negative contributions to SP will be permitted, with any positive

contributions being considered a part of Su. This gives, for a general discritised transport equation;

(AP − SP)uP =
∑
m

Amum + Su (3.18)

where SP is the solution dependent source term (SP ≤ 0), and Su is the solution independent source

term. As an example, the values of the A’s, SP and Su for the discretised u momentum equation,

using first order upwind differencing, are presented below;

75

AE = max (0,−Ce) +

(
2µ∆y∆z

∆x

)
e

AW = max (0, Cw) +

(
2µ∆y∆z

∆x

)
w

AN = max (0,−Cn) +

(
µ∆x∆z

∆y

)
n

AS = max (0, Cs) +

(
µ∆x∆z

∆y

)
s

AT = max (0,−Ct) +

(
µ∆x∆y

∆z

)
t

AB = max (0, Cb) +

(
µ∆x∆y

∆z

)
b

AP = AE +AW +AN +AS +AT +AB

SP = 0

Su = − (pe − pw) ∆y∆z+

(µ∆x∆z)n
vN − vP

∆y
− (µ∆x∆z)s

vP − vS
∆y

+

(µ∆x∆y)t
wT − wP

∆z
− (µ∆x∆y)b

wP − wB
∆z

Equation 3.18 is solved at each node that makes up the computational domain. Clearly, the

values of u at surrounding nodes will not be known before the solution is obtained, so we are dealing

with a linked system of equations. The system of equations can be written in matrix form which

results in a large (number of nodes × number of nodes) but sparse matrix. The inversion of this

matrix would yield the desired result, however, the coefficients, A, contain in them the unknown,

u (e.g. the mass fluxes, C depend on the flow velocity, u). Also, the inversion of such a large

matrix may be prohibitively expensive by todays computational standards. Hence iterative solution

methods are used.

3.4.1 Gauss-Seidel Iterative Method

In the Gauss Seidel iterative method, values are updated one at a time using the values at previous

iterations where necessary (or the initial guess values if at the first iteration). This is shown in

Equation 3.19 for a seven point stencil:

76

ul+1
P =

AlEu
l
E +AlWu

l
W +AlSu

l
S +AlNu

l
N +AlTu

l
T +AlBu

l
B + Slu

AlP − SlP
(3.19)

where l is the iteration number. It can be shown that the number of iterations required to achieve

convergence is proportional to the square of the number of nodes in one direction. This is not

particularly efficient and can take a lot of computational effort for a large system.

3.4.2 Alternating Direction Implicit method

The Gauss-Seidel method presented above is very easy to implement but unfortunately converges

rather slowly. One alternative, that is generally very efficient for structured grids, is the ‘Alternating

Direction Implicit’ method (ADI). In the ADI method, a whole row or column is updated at once.

A set of sweeps is first conducted along each row in the i direction (from west to east) giving a

preliminary update, denoted as iteration number l + 1
3 . Following this, sweeps along each column

in the j direction are conducted, giving the update at iteration l + 2
3 . Finally, a sweep in the k

direction (from top to bottom) is performed, yielding the final updated values at iteration number

l+ 1. Since a whole line is updated at once, and since there are alternating sweeps in each direction,

information propagation throughout the domain can be achieved much quicker than when using the

Gauss-Seidel method.

In the ADI method, algebraic equations of the following form are solved:

(
AlP − SlP

)
u
l+ 1

3

P −AlEu
l+ 1

3

E −AlWu
l+ 1

3

W = AlSu
l
S +AlNu

l
N +AlTu

l
T +AlBu

l
B + Slu (3.20)

where the terms on the left hand side are treated implicitly for the current sweep, while the terms

on the right are treated explicitly. This gives the following tri-diagonal system of equations;

77

AlP (1,j,k) − SP AlE(1,j,k) · · · 0

AlW (2,j,k) AlP (2,j,k) − SP
. . .

...

...
. . .

. . . AlE(Ni−1,j,k)

0 · · · AlW (Ni,j,k) AlP (Ni,j,k) − SP

·

u
l+ 1

3

(1,j,k)

u
l+ 1

3

(2,j,k)

...

u
l+ 1

3

(Ni,j,k)

=

Ql(1,j,k)

Ql(2,j,k)

...

Ql(Ni,j,k)

(3.21)

where Q = (Su +ANuN +ASuS +ATuT +ABuB). Tri-diagonal systems of equations, such as that

of Equation 3.21 can be solved using the Tri-Diagonal Matrix Algorithm (TDMA). The TDMA is

a simplified version of Gaussian Elimination that removes generality in favour of high efficiency.

The result is a highly efficient algorithm that is only applicable to tri-diagonal systems. This is

particularly well suited to the solution of the systems of equations that are found in CFD when using

a structured grid. In Section 3.4.4, implementation details of the TDMA method are presented.

Once the TDMA has been used to find all values of ul+
1
3 along the rows via 3.21, the sweep

direction is switched to the north-south direction say. For this sweep, the discretised equation at

any point is written as:

(
AlP − SlP

)
u
l+ 2

3

P −AlNu
l+ 2

3

N −AlSu
l+ 2

3

S = AlEu
l+ 1

3

E +AlWu
l+ 1

3

W +AlTu
l+ 1

3

T +AlBu
l+ 1

3

B + Slu (3.22)

which gives a system similar to that of Equation 3.21. The system is again solved using the TDMA

and the procedure is repeated for each column. Finally, a sweep from top to bottom is performed

by treating uP , uT and uB implicitly, with all other stencil contributions being treated explicitly.

Once all rows and columns have been updated, the updated value of ul+1 will have been obtained

at each node. The whole procedure is then repeated until convergence, which can be assessed via

Equation 3.23.

It can be shown that the number of iterations required to achieve convergence is proportional to

the number of nodes in one direction. This is significantly faster than the Gauss-Seidel method for

large systems.

78

3.4.3 Convergence

Convergence of an iterative method can be assessed by examining the root-mean-squared (RMS)

value of the residuals at each node in the domain. The RMS of the residuals is given by:

RMS =

 ∑
all nodes

(
(AP − SP)uP −

∑
m

Amum − Su

)2
0.5

(3.23)

Once the RMS residual error value has fallen to a sufficiently low level, the iterative procedure

is stopped and convergence may be assumed. The specific RMS level at which convergence can

be assumed is problem dependent, but generally one should aim to reduce the residuals by several

orders of magnitude from their initial values at t = 0. Performing further iterations on a converged

solution should have negligible effect on the solution. The final solution should therefore be unique,

and independent of the number of iterations conducted.

3.4.4 The Tri-Diagonal Matrix Algorithm

For the tri-diagonal system

aixi−1 + bixi + cixi+1 = di (i = 1, 2, . . . , n)

the first step is to compute modified coefficients c′i and d′i, which are based on the original coefficients

as follows;

c′i =

ci
bi

i = 1

ci
bi−c′i−1ai

i = 2, 3, . . . , n

d′i =

di
bi

i = 1

di−d′i−1ai
bi−c′i−1ai

i = 2, 3, . . . , n

79

The solution is then obtained from

xn = d′n

xi = d′i − c′ixi+1 i = n− 1, n− 2, . . . , 1 (3.24)

For derivation details of the algorithm, the reader is referred to the original article by Thomas

[3], or to the more modern textbook by Versteeg et. al. [39].

3.4.5 Coupled Systems of Equations

Up to this point, a single, de-coupled equation has been used as the governing equation. It has been

assumed that all variables in the discretised u momentum equation, excluding u itself, are somehow

known. In reality, the Navier-Stokes equations that govern the flow are coupled, and clearly all flow

variables need be computed. When solving the coupled Navier-Stokes equations using one of the

iterative methods discussed above, there is a choice of solving the system simultaneously or in a

segregated manner. In the former method, all equations are considered as part of a single system.

Since all equations are solved at the same time, there is a strong coupling between the momentum

and continuity equations which can increase convergence rates. However, the side effect of solving

all equations simultaneously is that there is a significant increase in required computational memory

(RAM), owing to the fact that all equation coefficients are required at the same time, so a single

array cannot simply be overwritten. For this reason, such simultaneous solution methods shall not

be considered here. Stability is also often impaired.

In the segregated method, each discretised governing equation is solved sequentially. Each equa-

tion is treated as having only one unknown variable, with other variables taking their value from the

last iteration. The first variable is updated, separate from the rest. This is then followed by updating

the second variable, and so on. The variables are updated iteratively using the ADI method, for

example, in what is known as an inner -iteration. Once all variables have been updated in sequence,

one outer -iteration is said to have been conducted. As many outer-iterations are carried out as are

necessary to achieve convergence. Convergence is assumed when the RMS values of all the residuals

fall below a pre-defined tolerance for all variables (see Equation 3.23). The tolerance may be differ-

ent for each variable, if appropriate. Typically, one inner-iteration of each momentum equation is

80

conducted, followed by 3-8 (say) inner-iterations of the pressure correction equation, for each outer

iteration. However, the specific number of inner-iterations for each equation may depart from these

typical values if desired (and convergence rates can sometimes be improved by doing so).

3.4.6 Under-Relaxation

When considering a system of equations that are coupled, a change in a variable through an inner-

iteration will yield a change in the coefficients of other variables. If this change is large, instabilities

can occur. It is therefore usually necessary to limit the magnitude of the changes through the use

of under-relaxation.

The method of under-relaxation that is used is not dependent on the iterative scheme. By

generalising the iterative schemes discussed above, one can arrive at the general equation given

below, applicable to any of the iterative schemes mentioned, and for any of the discritisation practices

discussed;

(
AlP − SlP

)
φNEW
P −

∑
m

Almφ
l+1
m =

∑
b 6=m

Albφ
l
b + Slu (3.25)

where the summation over m is conducted over each node that is being treated implicitly, and the

summation over b is conducted over each remaining node that makes up the computational stencil

that is being treated explicitly.

The value φNEW is the result of performing an inner-iteration on the discretised governing equa-

tion with no under-relaxation, but this value is not used to update to φl+1. Instead, the updated

value of φ is given by;

φl+1 = φl + α
(
φNEW − φl

)
= αφNEW + (1− α)φl (3.26)

where α is the under-relaxation factor, and has a value 0 < α < 1.

Substituting φNEW from Equation 3.25 into Equation 3.26 yields;

81

φl+1
P = α

[∑
b 6=mA

l
bφ
l
b + Slu +

∑
mA

l
mφ

l+1
m

AlP − SlP

]
+ (1− α)φlP (3.27)

which upon rearranging gives us the following:

AlP − SlP
α︸ ︷︷ ︸
A∗P

φl+1
P −

∑
m

Almφ
l+1
m =

∑
b 6=m

Albφ
l
b + Slu +

(1− α)

α
AlPφ

l
P︸ ︷︷ ︸

S∗u

(3.28)

In Equation 3.28, the modified coefficient and source terms are denoted A∗P and S∗u respectively.

It can be seen that, since α is set to a value 0 < α < 1, the modified coefficient A∗P is greater than the

original coefficient AP . The effect of under-relaxation is therefore to increase the diagonal dominance

of the iterative scheme, which increases the rate of convergence (relative to solving without this

implicit under-relaxation and then updating φ explicitly through Equation 3.26). Once a sufficient

number of iterations have been conducted, and convergence is reached, the value of φl+1
P will equal

φlP , hence α in equation 3.28 will cancel, and the scheme will converge to the solution of the original

problem, irrespective of the value of α chosen (assuming convergence is actually achieved).

The optimum value of the under-relaxation factor is often different for different governing equa-

tions and for different problems. Typically, the momentum equations may be solved using a relatively

high value of α, (∼ 0.7 for example), while the particularly sensitive pressure correction equation

requires more significant under-relaxation (e.g. ∼ 0.2). However, specific values of α are problem

dependent. To speed up the rate of convergence, it is desirable to set the under-relaxation factor

to as high a value as is possible, but not so high that instabilities occur. The selection of suitable

values of α is more an art form than an exact science. Successful selections often come as a result

of experience, or through trial and error, rather than through analytic analysis. One strategy that

works well is to use low values of α for early iterations, where the solution generally changes rapidly,

then to gradually increase α, a little at a time, until convergence.

82

3.4.7 Deferred Correction Approach

A sufficient (but not necessary) condition for a bounded solution is that the coefficients A in Equation

3.18 are all positive, [40]. This is also a sufficient condition for convergence of the tri-diagonal

matrix solver (see Section ’refsec:TDMA). However, the only convection scheme that guarantees

these positive coefficients is the first order upwind scheme (UDS), described in Section 3.3.2.

It has already been stated that the first order accuracy of the UDS is unattractive. A method of

implementing higher order schemes, such as QUICK, while also avoiding these convergence issues is

therefore sought. A solution is the deferred correction approach.

In the deferred correction approach, the coefficients resulting from application of the first order

upwind scheme for convective fluxes are computed, and will be referred to as AUDSP , AUDSE , etc.

Similarly, the coefficients resulting from the application of the desired higher order scheme, such as

QUICK, are also computed, and will be referred to as AHOSP , AHOSE , etc. (where the acronym HOS

stands for Higher Order Scheme).

The UDS contributions are then treated implicitly, with the difference between the UDS and

HOS contributions being treated explicitly via addition to the source term, giving ;

(
AUDSP − SP

)
uP −

∑
m

AUDSm um =
(
AUDSP −AHOSP

)
uP −

∑
m

(
AUDSm −AHOSm

)
um + Su (3.29)

where the terms on the left hand side are treated implicitly, while terms on the right are treated

explicitly. Here, the term, Su represents the portion of source that excludes the difference between

the UDS and HOS contributions. In practice, all the terms on the right are absorbed into the source

term Su, however they are typed out fully here to demonstrate the deferred correction approach.

Note that in practice, some of the terms on the left may be transferred to the right (i.e. treated

explicitly) if the specific iterative algorithm dictates this. For example, for the Gauss-Seidel iterative

method, the terms
∑
mA

UDS
m um are always treated explicitly.

Since only the UDS coefficients are passed on to the tri-diagonal matrix algorithm, or other

iterative solver, stability issues are avoided. Also, at convergence, the UDS terms will cancel out,

and the resulting solution will be equal to that obtained via the use of the HOS without any deferred

correction.

83

3.5 The SIMPLE Algorithm

Fluid flows must satisfy the conservation of momentum and mass. For incompressible flows, the

momentum equations provide a link between velocity and pressure, and the continuity equation

dictates a restriction on the velocity field that ensures mass conservation. There is however, no

direct link between pressure and mass conservation in the incompressible Navier-Stokes equations.

It is this link that is required to couple the system. By coupling the system, the conservation of

momentum and mass can simultaneously be achieved, thereby yielding physical results.

Logical thinking shows there clearly is a link between pressure and the conservation of mass for

incompressible flows, as follows:

• An increase in a cell’s pressure, relative to that of surrounding cells, will ‘push’ fluid out of

the cell, resulting in a decrease in the net mass flux into the cell.

• Conversely, a decrease in a cell’s pressure, relative to surrounding cells, will ‘pull’ fluid into

the cell, resulting in an increase in the net mass flux into the cell.

There is a need to quantify the link expressed above for the use in practical calculations. This

can be achieved through a number of different iterative schemes, each of which enable the solution

to the complete incompressible Navier-Stokes equations to be obtained. This section shall outline

one such method; namely the SIMPLE algorithm, which was developed by Patankar and Spalding

[41]. In this project, the SIMPLE algorithm has been applied to colocated grids (all variables are

stored at the same nodes) rather than staggered grids (where different grids are used for u, v, w and

p), as the former method simplifies the gridding, particularly of complex geometries.

To commence, the momentum equations are initially solved using a guessed value of the pressure

field (or the value from the previous iteration) to yield a preliminary velocity field. However, in

general the resulting velocity field will not satisfy the conservation of mass. In an attempt to

conserve mass and momentum simultaneously, it is supposed that there are corrections, u′, v′, w′

and p′ that can be added to the original values obtained, such that the corrected variables satisfy

both momentum and mass. The corrected variables are then given by;

pl+1 = pl + p′ ul+1 = u∗ + u′ vl+1 = v∗ + v′ wl+1 = w∗ + w′ (3.30)

84

where the superscript ∗ denotes the preliminary velocity field found from an inner-iteration of the

momentum equations, with a guess of the pressure field. The values at iteration l+1 are the updated,

mass conserving values at the end of an outer-iteration. A prime superscript denotes the correction

that is to be applied.

To illustrate how the values of the corrections are obtained, consider the steady state continuity

equation;

∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0 (3.31)

Integrating Equation 3.31 over the control volume, then discretising using the finite volume

method (as discussed in Section 3.3.1) yields the following;

ρ
(
ul+1
e − ul+1

w

)
∆y∆z + ρ

(
vl+1
n − vl+1

s

)
∆x∆z + ρ

(
wl+1
t − wl+1

b

)
∆x∆y = 0 (3.32)

Equation 3.32 imposes a restriction on the velocity field that must be satisfied by the end of each

outer-iteration. By substituting the corrections (i.e. Equations 3.30) into the continuity equation,

the following is obtained;

ρ (u′e − u′w) ∆y∆z + ρ (v′n − v′s) ∆x∆z + ρ (w′t − w′b) ∆x∆y = −ṁ∗ (3.33)

where ṁ∗ is the net mass imbalance arising from the preliminary velocity field that we wish to drive

to zero, and is defined by the following;

ṁ∗ ≡ ρ [(u∗e − u∗w) ∆y∆z + (v∗n − v∗s) ∆x∆z + (w∗t − w∗b) ∆x∆y] (3.34)

The objective of the SIMPLE algorithm is to express the discrete continuity condition (Equation

3.33) in terms of a restriction to the pressure field (rather than on the velocity field), so that the

pressure can be adjusted to yield zero mass imbalance. To achieve this, it is first imagined that the

momentum equations are solved at the faces of the cell. The discretised form of these equations is

85

presented below;

ul+1
f =

1

APf

[∑
m

Amu
l+1
m −

(
pl+1
E − pl+1

W

)
∆y∆z + Slu

]
(3.35a)

vl+1
f =

1

APf

[∑
m

Amv
l+1
m −

(
pl+1
N − pl+1

S

)
∆x∆z + Slu

]
(3.35b)

wl+1
f =

1

APf

[∑
m

Amw
l+1
m −

(
pl+1
T − pl+1

B

)
∆x∆y + Slu

]
(3.35c)

where the subscript f denotes a face, and the summation is conducted over the imaginary nodes

surrounding the node under consideration. In Equations 3.35, Su is the source term with the pressure

source contributions removed.

By substituting the corrections (i.e. Equations 3.30) into the momentum equations (Equations

3.35), and then subtracting the original momentum equations (evaluated with the guessed pressure

field) from the result, the following expressions are obtained;

u′f =
1

APf

[∑
m

Amu
′
m − (p′E − p′W) ∆y∆z

]
(3.36a)

v′f =
1

APf

[∑
m

Amv
′
m − (p′N − p′S) ∆x∆z

]
(3.36b)

w′f =
1

APf

[∑
m

Amw
′
m − (p′T − p′B) ∆x∆y

]
(3.36c)

Equations 3.36 provide a linkage between the velocity corrections at the cell faces, and the

pressure corrections. These links can be substituted into the continuity equation. However, in

Equations 3.36, the summations over surrounding faces would bring in to the continuity equation

values of u′, v′ and w′ at surrounding locations. These values at the surrounding locations would

hence need to be evaluated. This would also involve evaluating u′, v′ and w′ at locations that

surround the original surrounding locations, and so on. The solution of the continuity equation at

node P would hence require knowledge of u′, v′, and w′ at each face throughout the domain. This is

clearly impractical so the summations in the above equations are neglected, in what is referred to as

86

the SIMPLE approximation. This simplification is justifiable, since at convergence, the corrections

will be zero anyway (i.e. u′ = 0, v′ = 0 and w′ = 0 at convergence, at all locations), so the

simplification does not alter the final converged result.

By making the SIMPLE approximation, and substituting Equations 3.36 into Equation 3.33

yields;

ρ

[
1

APe

(p′P − p′E)− 1

APw

(p′W − p′P)

]
(∆y∆z)

2

+ρ

[
1

APn

(p′P − p′N)− 1

APs

(p′S − p′P)

]
(∆x∆z)

2

+ρ

[
1

APt

(p′P − p′T)− 1

APb

(p′B − p′P)

]
(∆x∆y)

2
= −ṁ∗ (3.37)

which is an equation for the pressure corrections. Equation 3.37 can be recast as follows:

aP p
′
P − aEp′E − aW p′W − aNp′N − aSp′S − aT p′T − aBp′B = −ṁ∗ (3.38)

where the a’s are the coefficients of p
′

in the pressure correction equation, and are defined below;

aE = ρ
1

APe

(∆y∆z)
2

aW = ρ
1

APw

(∆y∆z)
2

aN = ρ
1

APn

(∆x∆z)
2

aS = ρ
1

APs

(∆x∆z)
2

aT = ρ
1

APt

(∆x∆y)
2

aB = ρ
1

APb

(∆x∆y)
2

aP = aE + aW + aN + aS + aT + aB

Note that uppercase A denotes the diagonal coefficients of the discretised momentum equations,

while lowercase a are the coefficients of the pressure correction equation. The coefficients APf
which

are contained within the a’s, are evaluated through linear interpolation to obtain their face values

from surrounding nodal values. It can be seen that Equation 3.38 is of the same form as that of

87

the discretised momentum equations. The same iterative solver can therefore be used for both sets

of equations. Typically the pressure correction benefits from performing several inner-iterations

(e.g. 3-8) for each outer iteration. This is due to the fact that the pressure correction equation is

reinitialised to zero at the beginning of each outer iteration.

Once the correction to the pressure has been computed, the pressure and the velocity components

are updated via the following;

pl+1
(i,j,k) = pl(i,j,k) + αpp

′
(i,j,k) (3.39a)

ul+1
P = u∗P +

1

AP
(p′w − p′e) ∆y∆z (3.39b)

vl+1
P = v∗P +

1

AP
(p′s − p′n) ∆x∆z (3.39c)

wl+1
P = w∗P +

1

AP
(p′b − p′t) ∆x∆y (3.39d)

3.5.1 Pressure ‘Checkerboarding’

In the SIMPLE algorithm, the current mass imbalance (ṁ∗) needs to be evaluated. It has been shown

that the mass imbalance is derived from the continuity equation, and is defined by the following;

ṁ∗ ≡ ρ (u∗e − u∗w) ∆y∆z + ρ (v∗n − v∗s) ∆x∆z + ρ (w∗t − w∗b) ∆x∆y (3.40)

The question is, how are the face velocities in 3.40 evaluated? Using liner interpolation may

seem the obvious answer, which for a uniform Cartesian grid, yields;

u∗e =
u∗E + u∗P

2
u∗w =

u∗W + u∗P
2

v∗n =
v∗N + v∗P

2
v∗s =

v∗S + v∗P
2

w∗t =
w∗T + w∗P

2
w∗b =

w∗B + w∗P
2

Substituting the face velocities into the expression for the mass imbalance (Equation 3.40) yields;

88

ṁ∗ = ρ

(
u∗E − u∗W

2

)
∆y∆z + ρ

(
v∗N − v∗S

2

)
∆x∆z + ρ

(
w∗T − w∗B

2

)
∆x∆y (3.41)

Equation 3.41 can then be used in the SIMPLE algorithm to complete as many outer-iterations as

are required for convergence. However, from the discretised u momentum equation, it can be noted

that the velocity u∗E is dependent on the pressure at nodes P and EE (with the contribution at node

E cancelling after linear interpolation for the pressure). Similarly, the velocity u∗W is dependent on

the pressure at nodes P and WW . Hence, the term u∗E − u∗W in Equation 3.41 involves pressure at

nodes WW , P and EE, but not at nodes E or W . A similar result is also found for the terms v∗N−v∗S

and w∗T−w∗B . This leads to a situation where the pressure at even nodes are coupled with each other,

but not with the odd nodes, and vice versa. The resulting pressure field, in one-dimension, may take

a variation such as that of Figure 3.2, for example, and still satisfy the discretised Navier-Stokes

equations. In two dimensions, a ‘checkerboard’ style pressure variation may be obtained, where the

black squares of a checkboard are analogous to the coupled ‘odd’ nodes, which are decoupled from

the white squares, which are analogous to the ‘even’ nodes.

Figure 3.2: Odd-Even decoupling of the pressure field which may be found when using
colocated variables, with linear interpolation to determine the mass imbalance.

Such a pressure variation is clearly unphysical; it is an artifact of the discretisation process rather

than a feature of the Navier-Stokes equations. The following sections outline two different remedies

to solve this ‘checkerboarding’ problem.

89

A solution: The Staggered Grid

To rectify the checkerboarding problem, a staggered grid can be used. In a staggered grid, velocity

components are stored half way between the pressure nodes that drive them. This leads to three

different meshes being required in 2D flows, or four meshes for 3D flow. Such a staggered grid

arrangement is illustrated in Figure 3.3.

Figure 3.3: A staggered grid arrangement.

The advantages of using a staggered grid arrangement are;

• The pressure is now stored at the location required by the momentum equations. No interpo-

lation is required.

• The velocities are now stored at the locations required to compute the mass imbalance. Again,

without interpolation.

Because of this, when computing the mass imbalance, there is no odd-even de-coupling to the

pressure, hence no checkerboarding is encountered. However, the generation of separate meshes for

the different variables requires significant effort, particularly when using non-orthogonal grids. For

this reason, the staggered grid is not always a practical solution, especially in 3D and for complex

geometries.

90

Rhie-Chow Interpolation

Rather than using a staggered grid, it is desirable to use a colocated grid to simplify the grid

generation problem. To overcome checkerboarding issues, an alternative interpolation method can

be used to evaluate the face velocities when computing the mass imbalance. Rhie and Chow proposed

a non-linear interpolation scheme that ensures the velocities at the faces are linked to the pressure

at surrounding nodes, [42]. Their idea involves taking a central difference of the velocity, and then

subtracting a central pressure difference, discretised at the nodal locations and averaged (linearly

interpolated) onto the face. Finally the central pressure difference, discretised at the face is added

to the result. As an example, the Rhie-Chow interpolation for u∗e is given by

u∗e = u∗ − ∆y∆z

AP

(
pli−1/2,j,k − p

l
i+1/2,j,k

)
e

+
∆y∆z

AP e

(
plP − plE

)
(3.42)

where an overbar indicates linear interpolation from the neighbouring nodes to the face. For a

uniform, Cartesian, grid this gives;

u∗e = 0.5 [u∗P + u∗E]

+ 0.5

[(
∆y∆z

AP

)
(i,j,k)

(
plW − plE

)
2

+

(
∆y∆z

AP

)
(i+1,j,k)

(
plP − plEE

)
2

]

+ 0.5

[(
∆y∆z

AP

)
(i,j,k)

+

(
∆y∆z

AP

)
(i+1,j,k)

] (
plP − plE

)
(3.43)

As the grid size tends to zero, the second and third lines of Equation 3.43 cancel, hence the

discretised approximation is equivalent to the continuum value of u in this limit (i.e. the interpolation

scheme is consistent). Lines two and three of Equation 3.43 are a pressure smoothing term, which

eliminates the checkerboarding that may be found when not using any pressure smoothing. The

checkerboarding is avoided due to the fact that the face velocities now incorporate pressure from

both odd and even nodes, so there is no decoupling. It can be shown that the pressure smoothing

term is equivalent to an artificial dissipation that is of third order.

91

3.6 Boundary Conditions

The same governing equations can be used to simulate a wide variety of different flow conditions,

even if the same computational mesh is used. For a steady state solution, one of the driving factors

that makes the solution unique is the boundary conditions. It is hence of critical importance to treat

the boundary conditions in an appropriate numerical way.

The most common types of boundary conditions are;

• Dirichlet boundary conditions (i.e. φ specified)

• Neumann boundary conditions (i.e. ∂φ
∂n specified)

Both types of boundary conditions can be implemented by transferring the boundary flux to

the source term. Hence, the coefficient A in the boundary direction is set to zero (in order to ‘cut’

the boundary node from the solution), and then the boundary flux is added to the source. Is is

usual to store the boundary values at extra nodes located at the boundary faces, so that the same

methods of computing fluxes and coefficients as for internal nodes can be used, hence simplifying

the computational code.

The following physical boundary conditions are frequently encountered in CFD simulations;

• At a wall, the no-slip condition applies (assuming a non-zero fluid viscosity). In other words,

the velocity of the fluid is equal to the velocity of the wall (a Dirichlet boundary condition).

• At an inlet, the fluid velocity is normally specified (a Dirichlet condition). The pressure is

normally extrapolated from the interior of the domain.

• At an outlet, the flow variables are usually not known. However, it is usually the case that

the outlet is set far enough downstream that the flow is not changing significantly in the

downstream direction. In this case, ∂v
∂n ≈ 0. By discretising this relation, it can be seen that

this is the equivalent of setting ub, vb and wb to their values at the adjacent node. A zero

gradient is not applicable for the pressure since a pressure gradient may be present no matter

how far downstream the outlet is. For example, in a pipe flow, it is this pressure gradient that

is driving the flow. The pressure can therefore be extrapolated from the interior. A linear

extrapolation may be used for this purpose. An alternative for internal flows, where the outlet

boundary values should be set such that global mass conservation is achieved will be described

in Section 3.6.1.

92

The pressure correction equation is usually solved with the boundary condition ∂p′

∂n = 0. This is

found from Equations 3.36, where the velocity at the boundary is taken as known for each inner-

iteration of the pressure correction equation, hence u′ = v′ = 0. Making the SIMPLE approximation

then gives p′f = p′P . Alternatively, if the pressure is known at the boundary, the correction must be

set to zero there. For interpolation cells, the pressure correction is interpolated since the correction

should be the same as at the point the pressure was interpolated from. This follows from the fact

that if the pressure changes on one subgrid, the pressure at the same location on another overlapping

subgrid should change by a corresponding amount. There cannot be separate pressure fields covering

the same physical space.

3.6.1 Bulk Correction Methods

For internal flows where the flow is driven by a pressure difference between the inlet and outlet (such

as the flow through a channel or pipe), it is important that the mass entering the domain through

the inlet is exactly balanced by the mass exiting through the outlet. However, the combination of

zero gradient for the velocity components, coupled with a linear extrapolation for the pressure, does

not guarantee that this will be the case.

A simple solution can be achieved by summing the total mass flux entering the domain through

the inlet (Min), as well as the total mass flux exiting the domain through the outlet (Mout). By

then multiplying the normal velocity component at each face on the outlet by Min

Mout
, the conservation

of mass can be assured. However, this simple solution leads to an over-specification of the discrete

problem on the outlet boundary, which can in some cases lead to convergence difficulties.

The root of the problem in this simple method is that the boundary velocity will generally be

inconsistent with the boundary pressure gradient. This is due to the fact that the boundary velocity

has been altered (multiplied by Min

Mout
) without any corresponding alterations to the pressure field.

An alternative, which is more rigorous than the above approach, is to derive from the discrete

momentum equations a bulk pressure correction, which (in an iterative manner) drives the solution

toward global mass conservation.

To derive the iterative bulk pressure correction algorithm, consider the two-dimensional grid of

Figure 3.4. Note that the method is equally applicable to three-dimensional grids, but the working

is lengthy and hence will not be presented here.

The current mass flux through the outlet is given by ;

93

Figure 3.4: A sample two-dimensional outlet.

M l
out ≡

∑
ρule∆y (3.44)

where the summation is conducted over all the faces that make up the outlet boundary, and the

superscript l indicates that the flux is computed at the beginning of the current iteration.

By assuming a zero gradient boundary condition for the velocity on the outlet (which is appro-

priate provided the outlet is sufficiently far downstream from any flow disturbances), we can replace

ue in Equation 3.44 with uP , giving 3.45 ;

M l
out =

∑
ρulP∆y (3.45)

For global mass conservation, we require that the mass flux entering the domain through the

inlet is equal to the mass flux leaving through the outlet. Hence we have ;

94

Min = Mout

∴Min =
∑

ρuP∆y (3.46)

However, the current mass flux M l
out will, in general, not satisfy 3.46. We therefore apply a

correction to the velocity component normal to the outlet, that drives the solution toward global

mass conservation. The applied correction is of the form ;

uP = ulP + u′P (3.47)

where u′P is the correction, ulP is the current (non mass-conserving) velocity, and uP is the final

mass conserving velocity after applying the bulk correction.

Substituting 3.47 into 3.46 yields ;

Min =
∑

ρ
(
ulP + u′P

)
∆y (3.48)

We now wish to find the corresponding pressure correction at the boundary face that would drive

the flow toward this globally mass conserving velocity. It has already been shown in Section 3.5 that

the discretised u-momentum equation provides a link between the velocity correction and pressure

correction as follows;

u′P =
1

AP
(p′w − p′e) ∆y (3.49)

where the SIMPLE approximation has been made in order to avoid introducing the contributions

from surrounding nodes (see Section 3.5 for details).

The term p′w in 3.49 is now set to zero, since we do not wish the bulk pressure correction algorithm

to alter the solution on the interior of the domain. Only the boundary pressure should be set by

the bulk correction algorithm, with the interior pressure field arising as a result of the SIMPLE

95

algorithm. Substituting Equation 3.49 into 3.48 (with p′w = 0), we have ;

Min =
∑

ρulP∆y −
∑

ρ
1

AP
p′e∆y

2 (3.50)

which upon rearrangement gives ;

p′e =
M l
out −Min∑
ρ 1
AP

∆y2
(3.51)

where p′e has been conveniently be removed from the summation since it is treated as a constant

(i.e. the same correction is applied to all faces making up the outlet boundary).

Equation 3.51 gives a correction to the current boundary pressure that should be applied to each

node on the outlet boundary in order to achieve global mass conservation.

3.7 Coordinate Transformations

Up to now, a Cartesian coordinate system has been considered. While this has been useful in

demonstrating the finite-volume method, restricting ourselves to problems in a Cartesian reference

frame is not particularly useful for problems involving complex geometries. This section considers

the coordinate transformations required to simulate flows in a general coordinate system.

We wish to transform the global coordinate system (x, y, z) to the local coordinate system (ζ, η, ξ).

From the chain rule we have;

∂φ

∂ζ
=
∂φ

∂x

∂x

∂ζ
+
∂φ

∂y

∂y

∂ζ
+
∂φ

∂z

∂z

∂ζ

∂φ

∂η
=
∂φ

∂x

∂x

∂η
+
∂φ

∂y

∂y

∂η
+
∂φ

∂z

∂z

∂η

∂φ

∂ξ
=
∂φ

∂x

∂x

∂ξ
+
∂φ

∂y

∂y

∂ξ
+
∂φ

∂z

∂z

∂ξ

Or, in matrix form;

96

∂φ
∂ζ

∂φ
∂η

∂φ
∂ξ

 =

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

 ·

∂φ
∂x

∂φ
∂y

∂φ
∂z

Inverting this system yields;

∂φ
∂x

∂φ
∂y

∂φ
∂z

 =
1

|J |

(
∂y
∂η

∂z
∂ξ −

∂z
∂η

∂y
∂ξ

)
−
(
∂y
∂ζ

∂z
∂ξ −

∂z
∂ζ

∂y
∂ξ

) (
∂y
∂ζ

∂z
∂η −

∂z
∂ζ

∂y
∂η

)
−
(
∂x
∂η

∂z
∂ξ −

∂z
∂η

∂x
∂ξ

) (
∂x
∂ζ

∂z
∂ξ −

∂z
∂ζ

∂x
∂ξ

)
−
(
∂x
∂ζ

∂z
∂η −

∂z
∂ζ

∂x
∂η

)
(
∂x
∂η

∂y
∂ξ −

∂y
∂η

∂x
∂ξ

)
−
(
∂x
∂ζ

∂y
∂ξ −

∂y
∂ζ

∂x
∂ξ

) (
∂x
∂ζ

∂y
∂η −

∂y
∂ζ

∂x
∂η

)
 ·

∂φ
∂ζ

∂φ
∂η

∂φ
∂ξ

(3.52)

where the terms ∂y
∂ζ , ∂y∂η , ∂y∂ξ , ∂x∂ζ

∂x
∂η , ∂x∂ξ

∂z
∂ζ

∂z
∂η and∂z∂ξ are geometrical quantities that can be discretised

via a finite difference, and then evaluated simply by examining the mesh. The term, |J | is the

Jacobian of the transformation, and is given by;

|J | = ∂x

∂ζ

(
∂y

∂η

∂z

∂ξ
− ∂z

∂η

∂y

∂ξ

)
− ∂y

∂ζ

(
∂x

∂η

∂z

∂ξ
− ∂z

∂η

∂x

∂ξ

)
+
∂z

∂ζ

(
∂x

∂η

∂y

∂ξ
− ∂y

∂η

∂x

∂ξ

)
(3.53)

The transformations given by 3.52 can now be substituted into the Navier-Stokes equations

and the resulting equations can then be discretised via the finite volume method in the usual way.

By doing this, it will be noticed that, for the diffusive flux terms on non-orthogonal grids, terms

involving the velocities at the vertices of the cell will appear. These extra terms are referred to

as “cross-diffusion” sources. The cross-diffusion terms should be evaluated via interpolation, and

added to the source term, Su.

97

Chapter 4

Modelling Turbulence

4.1 Introduction

The majority of flows that are of engineering interest are turbulent. Turbulent flows are fully de-

fined by the Navier-Stokes equations. Hence by solving the time-dependent Navier-Stokes equations

through typical discretisation techniques (e.g. the finite volume method), one could in principle

obtain a depiction of a turbulent flow field. This is known as a Direct Numerical Simulation (DNS).

However, turbulent flows are characterised by apparently random fluctuations over a wide range of

length and time scales. At the largest scales, eddies of comparable scale to that of the flow field form.

These large eddies are unstable and break down, transferring their energy to smaller eddies. These

smaller eddies are themselves unstable and also break down, passing their energy to yet smaller

eddies. This process continues until the scales of the smallest eddies are sufficiently small that vis-

cous damping is prominent, at which point the smallest eddies are dissipated as heat. This leads

to a near-fractal distribution of scales. In order to depict all the significant features of turbulence

in a DNS simulation, it is necessary to solve over a computational domain that is larger than the

largest eddies, and with a grid-resolution fine enough to fully resolve the smallest eddies. Failure

to capture either end of this spectrum of scales would lead to an invalid simulation. In practice,

this requirement almost invariably leads to a prohibitively fine grid resolution. The computational

resources available (even when using modern supercomputers or large parallel clusters) are simply

insufficient to perform DNS simulations in all but the most simple of flows, and at relatively low

Reynolds numbers (and it is likely this will remain the case for some time). Hence a model is re-

98

quired to account for the effects of turbulence, whilst without fully resolving all (or any) turbulent

scales. One class of models is based on the eddy-viscosity hypothesis, and these will be looked at

within this chapter, since this the approach adopted in the present work.

4.2 Reynolds-Averaged Navier-Stokes Equations (RANS)

More often than not, it is the mean flow field that is of interest to an engineer rather than the

precise details of turbulent fluctuations. By decomposing variables into a mean and fluctuating

part, one can arrive at the Reynolds-Averaged Navier-Stokes (RANS) equations. For a steady state

simulation, the following decomposition is used on a variable;

φ (xi, t) = φ (xi) + φ′ (xi, t)

where

φ (xi) = lim
T→∞

1

T

∫ T

0

φ (xi, t) · dt

To develop the RANS equations, we start with the incompressible, steady state Navier-Stokes equa-

tions, given below.

∂uj
∂xj

= 0 (4.1a)

∂

∂xj

[
ρuiuj + pδij − µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
= 0 i = 1, 2, 3 (4.1b)

Substituting ui(x, t) = ūi(x) + u′i(x, t) and p(x, t) = p̄(x) + p′(x, t), and taking the time-average of

the result yields:

∂ūj
∂xj

= 0 (4.2a)

∂

∂xj

[
ρūiūj − 2µS̄ij

]
= − ∂

∂xj

(
p̄δij − ρu′iu′j

)
(4.2b)

where S̄ij is the mean rate of strain tensor, defined as:

99

S̄ij ≡
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
Equations 4.2 are the Reynolds-Averaged Navier-Stokes equations. The terms ρu′iu

′
j in Equation

4.2b are the Reynolds stresses, and are unknown; they cannot be represented purely in terms of

the mean flow quantities. The system of equations given by 4.2 is therefore not closed. Models are

required to approximate the Reynolds stresses.

4.3 The Eddy Viscosity Hypothesis

Since turbulence leads to increased mixing of a fluid, it seems a logical assumption to model the

effect of turbulence as an increased viscosity. To this end, a ‘turbulent viscosity’ can be computed

which is added to the molecular viscosity to yield the desired level of mixing. This approach is

known as the eddy-viscosity hypothesis. The Reynolds stresses are then modelled as follows:

−ρu′iu′j ≈ µt
(
∂ūi
∂xj

+
∂ūj
∂xi

)
− 2

3
ρδijk (4.3)

where µt is the turbulent viscosity and k is the specific turbulent kinetic energy, defined as k = 1
2u
′
iu
′
i.

Whilst the eddy-viscosity hypothesis is incorrect in the detail, the method has been shown to

provide reasonable engineering approximations to turbulence for a variety of flows. The method is

also simple to implement and is computationally economical. It is therefore extensively used in both

research and industry.

To close the RANS equations (Equations 4.2) it is now necessary to develop a definition of the

turbulent viscosity (µt). Turbulence is characterised by its kinetic energy and a length scale (see

Prandtl, [43]). By combining these parameters through dimensional analysis, one can arrive at the

following definition of the turbulent viscosity:

µt = Cµfµρk
1
2L (4.4)

where Cµ is a dimensionless constant, fµ is a dimensionless damping term (to be discussed presently)

100

and L is a lengthscale. What now remains is to determine both k and L throughout the domain.

There are several different methodologies available for achieving this. The simplest method is a so

called zero-equation model, in which both k and L are prescribed algebraically. However, algebraic

relationships are derived from the experimental observation of simple flows and are simply not valid

for more complex flows.

Alternatively, one-equation models can be used in which one variable is solved using a transport

equation, while the other is obtained from algebraic relationships. While this methodology does im-

prove the generality of the turbulence model somewhat, it is still limited to rather simple flows. As

an alternative to one-equation models, two-equation models can be employed where two transport

equations are solved, one to determine k and the other to determine a length scale L. Using this

approach, it has been shown that reasonable accuracy can be achieved for a wide range of differ-

ent flows. However, generality is still restricted somewhat due to limitations of the eddy-viscosity

hypothesis and by some of the approximations that have to be made. Despite these limitations,

two-equation models offer an attractive compromise between efficiency and accuracy, and hence are

used extensively. It is this approach that shall be considered here.

4.3.1 Two-Equation Models

There are several different two-equation models available in the literature. In almost all such models,

a transport equation for the specific turbulent kinetic energy, k, is used directly in Equation 4.4. It

is reasonably straightforward to show that the exact transport equation for k is given by Equation

4.5. For derivation details of Equation 4.5, the reader is referred to Reference [44].

ρ
∂k

∂t
+

∂

∂xj

[
ρūjk − µ

∂k

∂xj

]
= −ρu′iu′j

∂ūi
∂xj
− µ∂u

′
i

∂xj

∂u′i
∂xj
− ∂

∂xj

[
1

2
ρ(u′iu

′
iu
′
j) + u′jp

′
]

(4.5)

The terms on the left hand side of Equation 4.5 need no modelling and are of the same form as a

general scalar transport equation. Standard finite volume method techniques can therefore be used

to discretise the left hand terms. The right hand terms however, are not represented solely in terms

of the mean flow variables, hence approximations to these terms are required.

The first term on the right hand side of Equation 4.5 represents the rate of production of turbulent

kinetic energy by the mean flow. Using the eddy-viscosity hypothesis (Equation 4.3) the production

101

term is approximated as follows:

Pk = −ρu′iu′j
∂ūi
∂xj
≈ µt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
∂ūi
∂xj

(4.6)

The second term on the right hand side represents the turbulent dissipation rate (i.e. ρε). This

is physically the rate at which turbulent kinetic energy is converted into heat:

µ
∂u′i
∂xj

∂u′i
∂xj
≈ ρε (4.7)

This process is irreversible. A method of modelling the dissipation rate, ε, will be given in due

course.

The final term on the right hand side physically represents the turbulent diffusion of turbulent

kinetic energy. This can be modelled using the gradient diffusion approximation:

(
1

2
ρ(u′iu

′
iu
′
j) + u′jp

′
)
≈ µt
σk

∂k

∂xj
(4.8)

for some (constant) σk. The final modelled transport equation for k is therefore given by:

ρ
∂k

∂t
+

∂

∂xj

[
ρūjk −

(
µ+

µt
σk

)
∂k

∂xj

]
= Pk − ρε (4.9)

This equation can be solved using standard solution procedures. For example, if using a struc-

tured grid, one can use the highly efficient tri-diagonal matrix algorithm, coupled with an alternating

direction implicit solution procedure (see Chapter 3 for details).

To determine the length scale of the turbulence, a second transport equation is solved. The

choice of variable that is used in this transport equation varies from one model to the next. Different

models can perform better than others for different simulations. There is no overall best model that

is universally applicable to the whole class of turbulent flows. This is testament to the fact that

the eddy-viscosity hypothesis, along with the further modelling approximations that are made, are

102

non-exact.

In the present work, the turbulent dissipation rate, ε, is used to determine the length scale. This

choice leads to a class of models known as the k − ε models. The k − ε class was chosen due to the

fact that it is extensively used, and is hence well established and arguably better suited to a wider

range of flow situations than some other options.

The exact ε transport equation can be derived from the Navier-Stokes equations in a similar way

to that of the k transport equation (see Reference [44] for details). However, the result contains a

number of unknown correlations associated with the very small scale part of the turbulence spectrum.

As a result, the equation has to undergo extensive modelling to represent all fluctuating quantities

in terms of the known mean quantities. Consequently, there is little point in attempting to derive

an equation for ε; instead the whole equation can be considered an empirical model without much

loss of rigour. The typical modelled transport equation for ε is given by Equation 4.10:

ρ
∂ε

∂t
+

∂

∂xj

[
ρūjε−

(
µ+

µt
σε

)
∂ε

∂xj

]
= Cε1

ε

k
Pk − Cε2ρ

ε2

k
+ Sε (4.10)

where the constants Cε1 and Cε2 are closure coefficients; they assume appropriate values such that

the resulting flow field for simple flows is equivalent to that from alternative data sources (often

experimental or DNS data). The term Sε represents any additional model dependent source terms

(if present) such as the Yap correction term (see Section 4.4). Appropriate values of the closure

coefficients will be given in Section 4.3.2.

Once the distribution of ε has been obtained throughout the domain, ε is related to the length

scale through the empirical relation ε ≈ k
3
2 /L. The result is used (along with the value of k) to

determine the turbulent viscosity via Equation 4.4. This turbulent viscosity is then used to approx-

imate the Reynolds stresses via Equation 4.3, which are used in the RANS equations (Equations

4.2) to yield the mean flow properties. This gives a complete (closed) model of turbulence.

4.3.2 Near Wall Treatments

Near to a wall, the behaviour of the k − ε model as described above is inaccurate. Close to solid

boundaries, low Reynolds number viscous effects become prominent. If the k− ε equations are to be

solved right up to a wall, empirical damping terms are required to ensure the turbulent predictions

103

correlate with experimental observations (at least for simple flows). The typical forms adopted for

the k and ε equations, with damping terms and additional source terms to account for near wall

effects, are given by Equations 4.11, 4.12 and 4.13. These equations are collectively referred to as

the low-Reynolds number k − ε turbulence models.

ρ
∂k

∂t
+

∂

∂xj

[
ρūjk −

(
µ+

µt
σk

)
∂k

∂xj

]
= Pk − ρε (4.11)

ρ
∂ε̃

∂t
+

∂

∂xj

[
ρūj ε̃−

(
µ+

µt
σε

)
∂ε̃

∂xj

]
= Cε1f1

ε̃

k
Pk − Cε2ρf2

ε̃2

k
+ ρE (4.12)

ε = ε̃+D (4.13)

The damping terms and coefficients may vary from one model to the next. These terms are given

in Table 4.1 for the Chien, [45], and Launder-Sharma, [2], models (the two models implemented in

this project).

Chien Launder-Sharma

fµ 1− e−0.0115y+ exp −3.4
(1+Ret/50)2

f1 1 1

f2 1− 0.22e−(Ret
6)

2

1− 0.3e−Re
2
t

D 2µρ
k
y2 2µρ

(
∂
√
k

∂xj

)
E − 2µε̃

y2 e
−0.5y+ 2µρ

µt

ρ

(
∂2uj

∂x2
j

)
Cε1 1.35 1.44
Cε2 1.8 1.92
σk 1 1
σε 1.3 1.3
cµ 0.09 0.09

Table 4.1: Damping terms and coefficients for the Chien and Launder-Sharma low-Re k − ε
models.

The damping terms and coefficients in these models have been arrived at empirically, through the

observation of experimental flow data and/or DNS data. The terms are tuned to match observations

for simple flows (for example, with the aim of reproducing the law of the wall for a flat plate boundary

layer). The fact that there are several variants of the k−ε model, with no overall ‘superior model’, is

evidence of the fact that the different models are tuned for specific applications. Their applicability

to complex flows is therefore questionable. For example, the k − ε model performs poorly in flows

with strong pressure gradients.

104

4.3.3 Boundary Conditions

In both the Chien and Launder-Sharma turbulence models, both k and ε̃ are equal to zero at a wall.

The former result follows from the no-slip condition. For the latter result, the turbulent dissipation

rate is generally non-zero at a wall. However the extra term, D in the models is designed to provide

the very near-wall dissipation rate and hence ε̃ is equal to zero at a wall.

At an outflow a zero-gradient condition may often be assumed (if this is physically the case). By

placing the outflow far enough downstream from disturbed flow, this assumption is usually valid.

Outflow boundary conditions are treated in the same way as those of the mean flow variables.

When using the overset grid method, interpolation boundaries are frequently encountered. In

this situation, values for both k and ε̃ can simply be interpolated from a suitable donor grid in the

same way as for the mean flow variables (see Chapter 5 for details).

At an inlet, turbulent conditions must be estimated or reproduced from experimental data (if

available). It is often useful to define the turbulent inlet conditions in terms of a viscosity ratio (µt

µ)

and a turbulence intensity, (I), defined by:

I =
U ′

ū
(4.14)

where U ′ is the root-mean-square of the turbulent velocity fluctuations and ū is the mean Reynolds-

averaged velocity.

The primitive variables, k and ε̃ at the inlet are then related to the intensity and viscosity ratio

through Equations 4.15:

kinlet =
3

2
(UI)

2
(4.15a)

ε̃inlet = Cµ
ρk2
inlet

µ

(
µt
µ

)−1

(4.15b)

where U is the magnitude of the mean inlet velocity. In the absence of suitable experimental data,

an experienced engineer can make engineering judgement as to suitable levels of turbulence, based

on the expected conditions upstream of the inlet (i.e. outside of the computational domain). Table

4.2 gives possible values for a selection of upstream flow conditions.

105

Intensity Example upstream conditions Typical values of intensity (I)
High High Reynolds number internal flows involving

complex geometries. e.g. compressors or heat ex-
changers

5% - 20%

Medium Flows in large pipes or rooms 1% - 5%
low High quality wind-tunnels or flow that originates

from stationary conditions e.g. the external flow
over a car on a windless day

< 1%

Table 4.2: Suitable values of turbulence intensities for different flow inlet conditions

4.4 Length scale correction

In regions of flow separation it is well understood that the standard k − ε turbulence model class

tends to predict excessive levels of turbulence [46, 47, 48]. The root of the problem lies in an

underprediction of ε in the separation region [44, 49]. An ad hoc correction to the length scale has

been proposed by Yap [50], which takes the form of an additional source term in the ε equation.

The correction that is proposed is given by Equation 4.16:

Sε = max

∣∣∣∣∣0.83ρ
ε2

k

(
k1.5

2.55εyn
− 1

)(
k1.5

2.55εyn

)2

, 0

∣∣∣∣∣ (4.16)

where yn is the normal distance to the nearest wall.

In complex geometries, the normal distance to the wall is difficult to compute, and hence the Yap

correction is poorly suited to such situations. Iacovides and Raisee, [51], propose a differential form

of the length scale correction term that is independent of the distance to the wall. The additional

source term of ε that this differential correction takes is of the following form:

Sε = max
∣∣∣0.83F (F + 1)

2
ρε2/k, 0

∣∣∣ (4.17)

F ≡ (D − E) /2.55 (4.18)

D ≡
[(

∂k3/2/ε

∂xj

)(
∂k3/2/ε

∂xj

)]0.5

(4.19)

E ≡ 2.55 [1− exp(−0.1069Ret)] + 0.1069× 2.55Ret exp(−0.1069Ret) (4.20)

106

It can be seen that this alternative form of the length scale correction is independent of wall

distance.

4.5 Alternative Turbulence Models

While the two-equation eddy viscosity turbulence models described above do offer an efficient and

reasonably accurate description of turbulence for a variety of flows, they are far from the only options

available. Other options typically address different points on the accuracy versus computational

efficiency spectrum. To gain increased accuracy, one usually has to sacrifice computational efficiency.

Clearly, there is no point in blindly striving for the greatest possible accuracy at any cost, when

a simple and efficient turbulence model may suffice. For this reason, simple eddy-viscosity models

have their place, but so do other more accurate methods. There is no universal ‘one fits all’ approach

to turbulence modelling, and a small selection of the alternative methods will be briefly outlined in

this section.

At a greater potential accuracy than the k − ε model, we have the Reynolds-Stress transport

models, where a transport equation for each Reynolds stress is solved. While this method does

offer the potential of increased accuracy and greater generality, the success of the model has been

limited. Some turbulent flows can be simulated more accurately with the Reynolds-stress approach

(versus a k − ε model) whereas the opposite may be true for other flow categories. For 3D flows,

six transport equations are solved, one for each of the Reynolds stresses, and one extra transport

equation is solved to determine the dissipation rate. In total, seven transport equations are therefore

solved (versus two for the k − ε models). This amounts to a significant increase in computational

resources relative to two-equation models. As a result, the Reynolds-stress transport model has

received limited acclaim.

When striving for greater accuracy over RANS approaches, or when the details of instantaneous

fluctuations are required, a Large Eddy Simulation (LES) is an attractive option. In this method,

the larger eddies (those large enough to be fully resolved on a given grid) are fully resolved in both

space and time. The smaller, sub-grid scale, eddies are modelled. According to Kolmogorov’s theory

of self-similarity, [52], the larger eddies in a flow are dependent on the geometry, whereas smaller

eddies are more universal. This makes the development of a suitable sub-grid scale turbulence model

a relatively simple task, and also means that large-eddy simulations have the potential of a wide

107

range of applicability.

The computational costs associated with performing a large-eddy simulation are significantly

higher than for a RANS approach (especially given the simulation will always be three-dimensional

and time dependent, even where the mean flow is two-dimensional and steady), but are lower than

performing a full DNS simulation. When given the processing and storage capabilities of modern

parallel clusters, LES is a practical option for the majority of simulations. However, since not all

users of CFD have access to such resources, LES usage is somewhat restricted. This situation will

no doubt improve with time as computational capabilities improve. It is this authors opinion that

LES usage will surpass RANS models during the next generations of turbulence modelling.

108

Chapter 5

The Overset Algorithm

5.1 Introduction

In this chapter, an outline of the overset algorithms used and developed as a part of this thesis are

presented. In Section 5.2, the details of the new hole cutting algorithm developed in this project

are presented. This is followed by the details of an algorithm that is used to determine if two

triangles intersect one another, which is a necessary test used by the hole cutting algorithm. The

interpolation methods implemented in this project are then outlined in Section 5.4. The details of

two alternative interpolation methods are given; Section 5.4.1 gives the implementation details of

a standard tri-linear interpolation, while Section 5.4.2 introduces the semi-conservative approach of

Tang et. al., [1], which attempts to enforce the conservation of mass over overset grids. In Section

5.5, details of binary search trees and an alternating digital tree formulation are presented. These

algorithms are used for quick searching and geometric intersection testing, for example, in order

to find interpolation stencils. Following this, Section, 5.6 outlines the implementation details of a

surface grid ‘zipping’ algorithm, based on the method of Chan and Buming, [53], which is used in

the present study for applying an overall bulk correction to overset grids. Finally, the algorithm

presented in Section 5.7 demonstrates how all the algorithms, described elsewhere in this chapter,

come together to provide domain connectivity between the overset grids.

109

5.2 Hole-Cutting

The objective of the hole-cutting algorithm is to provide an overset grid from a set of structured

sub-grids. This is achieved by tagging each cell on each sub-grid as a standard cell, an interpolation

cell, or an unused cell. Standard cells are those that the discritised governing equations can be

solved on using a computational stencil comprising of other standard cells, or interpolation cells

only. Interpolation cells are cells in which the values of the primitive variables are obtained through

interpolation, and are required in order to provide a complete computational stencil to other standard

cells. Unused cells are cells that take no part in the computation at the current time-step (they may

come into the computational domain at later time-steps however).

For simple geometries, hole cutting is not always necessary. However, in the general case, some

cells may lie outside of the computational domain, in which case they must be ‘cut’, (i.e. tagged

as unused). In order to remove cells that lie outside of the computational domain, the first step is

to identify any cells that intersect the edge of the computational domain. The intersection of walls

shall be considered here, but the method is equally applicable to other edges of the computational

domain, such as inlets, outlets and symmetry boundary conditions. A ‘wall face’ is defined as the

quadrilateral face of a cell that has the wall boundary condition applied to it. To test for intersection

of this wall face with any given hexahedral cell, the wall face can be split into two triangles. Similarly,

each face of the test cell can be split into two triangles, generating a total of twelve triangles for

the test cell, in addition to the two triangles for the wall face. The wall face to cell intersection test

is then decomposed into upto twenty-four triangle-triangle intersection tests (the triangle-triangle

intersection test algorithm used in the present study is described in Section 5.3). If an intersection

is detected, then the test cell must lie partly outside of the computational domain, and therefore

cannot be used in the computation, and hence should be tagged as an unused cell. By means of an

example, Figure 5.1 illustrates user generated grids that may be used for the study of flow around a

circular cylinder. Figure 5.2 shows the same grids after removing any cells intersecting the cylinder’s

wall.

Once all cells that intersect the edge of the computational have been removed, what remains

is to remove the cells that lie fully outside of the computational domain. This can be achieved

by noting that any cells that are adjacent to an unused cell cannot be standard cells (since their

computational stencils would be incomplete). They must therefore be either interpolation cells or

110

unused cells. For each cell that is adjacent to an unused cell, a suitable donor grid from which

to interpolate from is attempted to be found (this is achieved by attempting to find interpolation

coefficients between 0 and 1, as described in Section 5.4). Where no suitable donor grid can be

identified the cell in question must be outside the computational domain, and is therefore tagged

as unused. Alternatively, if a suitable donor-grid can be identified, the cell should be tagged as an

interpolation cell. By repeating this process until no further changes are made by repeating further,

all cells that lie outside of the computational domain will have been tagged as unused, and a valid

overset grid will have been attained. Figure 5.3 shows the outcome of this step.

While the overset grid of Figure 5.3 is valid, it corresponds to the case of the maximum permissible

overlap. It is however usually desirable to minimise the overlap between grids in order to reduce

duplicate computational effort. In an overlap region, where there are multiple cells from different

sub-grids covering the same physical space, it is not immediately obvious which cell (if any) to

mark as unused. The majority of hole-cutting algorithms available in the literature allow the user

to prescribe a priority to whole sub-grids and cells are cut from sub-grids with the lowest priority,

while preserving cells on sub-grids with higher priority (see for example Reference [54]). The sub-grid

with the highest priority therefore remains fully intact. While this method is simple to implement,

it is not particularly satisfactory since if a high priority sub-grid overlaps a near-wall region on a

lower priority sub-grid, the near wall nodes of the lower priority grid will be cut. Often, near-wall

nodes will have been generated with particular care and attention toward the near wall grid spacing

(particularly for turbulent flows). Having these cells marked as unused by the hole-cutting algorithm

would lead to poor quality solutions, or to grids that are difficult to generate (thereby undermining

one of the primary benefits of the overset method). To overcome this shortfall, a new hole-cutting

algorithm has been developed in which priorities are assigned on a cell by cell basis (rather than

a grid by grid basis). Priorities are calculated automatically, based on a user defined criteria (for

example, by preserving cells with the lowest volume). The algorithm is as follows:

• Consider overlapping sub-grids ΩA and ΩB . Initially, we wish to remove the cells on ΩA that

(a) fully overlap ΩB , (b) score lower than the mean score of the overlapping cells on ΩB in a

test such as lowest cell volume test, and (c) do not form part of an interpolation stencil for

any of the interpolation cells on any other sub-grid. Any cells on ΩA that match all three of

these criteria may be tagged as unused. Note that the cells on sub-grid ΩB are not altered at

111

this stage.

• Firstly, all the cells on ΩA that are required for interpolation by interpolation cells on other sub-

grids are flagged. This is achieved by generating interpolation coefficients for all interpolation

cells on grids Ωi, i 6= A, via the method described in Section 5.4, and flagging the cells on ΩA

that comprise of the resulting interpolation stencil.

• Any cells that were flagged in the previous step cannot be removed, as to do so would cause

an invalid interpolation stencil (one that comprises unused donor cells) for the interpolation

cells on other sub-grids. Furthermore, if a cell that is adjacent to a previously flagged cell were

to be removed, then the previously flagged cell should be converted to an interpolation cell in

order to provide a complete computational stencil to surrounding standard cells. However, the

interpolation from other interpolation cells is circular, and hence is not permitted. Therefore,

all cells on ΩA that are adjacent to those flagged in the previous step also cannot be removed,

and therefore should also be flagged.

• For each cell on ΩA that has not been flagged in the previous steps, the validity of removing the

cell is assessed. If the cell were to be removed, any surrounding standard cells would need to

be converted to interpolation cells to maintain complete computational stencils. The viability

of this conversion is assessed by attempting to find a suitable donor grid for all cells subject

to conversion. Where no donor grid can be identified for any one of the candidate conversions,

the original cell in question cannot be removed. Where donor stencils can be identified in all

cases, the original cell in question may be removed, (but is not removed yet).

• If the cell identified in the previous step may be removed, the cell(s) on the underlying grid

that overlap the present cell are identified (this step is done approximately for computational

efficiency by simply assessing if any underlying cell’s bounding box intersects the bounding

box of the present cell, where a bounding box is defined as a Cartesian aligned hexahedron,

which is defined by six numbers, indicating the smallest and largest x, y and z coordinates of

the object it encloses). The present cell is removed only if its volume (or other user defined

criteria, such as aspect-ratio, skew, etc.) is greater than the average of that of the cells it

overlaps. This way, smaller cells are preserved in favour of larger cells, thereby minimising the

chances of insufficient grid resolution, and avoiding the removal of carefully generated near

wall grid regions.

112

• These steps are repeated for each sub-grid in turn.

This fully defines the overset grids, and they are now ready to be used to obtain an overset

simulation. The resulting overset grids for the circular cylinder case are shown in Figure 5.4. It can

be seen that the overlap is now minimised relative to the overset grids of Figure 5.3 (which are valid,

but are also excessive).

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 5.1: Initial user generated grids for the flow around a circular cylinder.

113

Figure 5.2: Grids for the flow over a circular cylinder, after removing all cells that intersect
the cylinder’s wall.

114

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 5.3: Grids for the flow over a circular cylinder, after removing any invalid cells, and
tagging all (current) interpolation cells (interpolation cells are denoted through the use of

heavy lines).

115

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 5.4: Grids for the flow over a circular cylinder, after removing any excess cells in the
overlap region. These are the final grids, ready to be used in a simulation.

116

5.3 Triangle-Triangle Intersection test

It can be seen from Section 5.2 that the intersection of two triangles in 3D space frequently needs

to be tested as part of the hole cutting procedure. This section describes the triangle-triangle

intersection testing algorithm used for this purpose.

To test the intersection of triangles TA and TB, which lie on planes πA and πB respectively, the

equation of the plane πA is first computed:

AAx+BAy + CAz +DA = 0 (5.1a)

AA = yA1
(
zA2 − zA3

)
+ yA2

(
zA3 − zA1

)
+ yA3

(
zA1 − zA2

)
(5.1b)

BA = zA1
(
xA2 − xA3

)
+ zA2

(
xA3 − xA1

)
+ zA3

(
xA1 − xA2

)
(5.1c)

CA = xA1
(
yA2 − yA3

)
+ xA2

(
yA3 − yA1

)
+ xA3

(
yA1 − yA2

)
(5.1d)

DA = −(xA1
(
yA2 z

A
3 − yA3 zA2

)
+ xA2

(
yA3 z

A
1 − yA1 zA3

)
+ xA3

(
yA1 z

A
2 − yA2 zA1

)
(5.1e)

where xAi is the x-coordinate of the i’th vertex on triangle TA, and similarly for yAi and zAi .

The signed distances from the vertices that make up triangle TB, to the plane πA are computed

by inserting the coordinates of each vertex of TB into the equation of the plane πA, (Equation 5.1a).

If the signed distances of all vertices that make up triangle TB, to the plane πA are equal to 0, then

planes πA and πB are coplanar, and the intersection can be discarded (co-planar triangles can be

regarded as non-intersecting for the requirements of the present code).

Similarly, if some (but not all) of the signed distances computed above are equal to zero, then the

triangle TB touches the plane πA at a point, or along an edge, but does not intersect the plane. If

touching triangles were to count as an intersection, then further tests would be required to determine

if triangle TB touches the plane πA within TA. However, for the purposes of hole cutting, touching

triangles can be safely regarded as non-intersecting, hence if any of the signed distances computed

above are equal to zero, the intersection is discarded.

After discarding all triangle pairs that failed the prior tests, further triangle pairs can be discarded

(i.e. found to be non-intersecting) by testing if the triangle TB intersects the plane πA, and vice

versa. If the signed distances to πA of all three vertices that make up TB have the same sign (and

are non-zero), then all points of TB lie on the same side of the plane πA, hence triangle TB does not

117

intersect the plane πA, and the triangles therefore cannot intersect.

Similar tests are then performed on the vertices of triangle TA against the plane πB. If any of

these tests fail, the triangles do not intersect, and no further analysis is required.

For triangle pairs to have passed all prior tests, the triangles must intersect one another’s plane,

hence πA and πB must also intersect one another. The line of intersection, L, between planes πA

and πB, can be computed from:

Lx = x0 + t(NA ×NB)x (5.2a)

Ly = y0 + t(NA ×NB)y (5.2b)

Lz = z0 + t(NA ×NB)z (5.2c)

where NA = (AA, BA, CA), NB = (AB, BB, CB) are the normals of planes πA and πB respectively,

(x0, y0, z0) is some point on L, and t is the parameter that can take any real value (−∞ < t <∞).

For triangles TA and TB to intersect, the intervals on L that each triangle makes must overlap

one another (as depicted in Figure 5.5(a)). If the intervals do not overlap, the triangles do not

intersect (as depicted in Figure 5.5(b)). The objective of the remainder of the intersection test is

therefore to compute the intervals on L for each triangle.

If all , and , then the triangles are co-planar, and this case
is handled separately and discussed later. If not, the intersection of and is a
line, , where is the direction of the line and is some
point on it. Note that due to our previous calculations and rejections, both triangles
are guaranteed to intersect . These intersections form intervals on , and if these
intervals overlap, the triangles overlap as well. A similar interval test is used in a
different context by Laidlaw et al. [Laidlaw86]. Two situations that can occur are
depicted in figure 1.

L L

Figure 1: Triangles and the planes in which they lie. Intersection intervals are
marked gray in both figures. Left: the intervals along overlap as well as the
triangles. Right: no intersection, the intervals do not overlap.

Now, assume that we want to compute a scalar interval (on) that represents the
intersection between and , and that, for example, and lie on the same
side of and that lies on the other side (if not, you have already rejected it). To
find scalar values that represent the intersection between the edges and
and , the vertices are first projected onto :

(3)

The geometrical situation is shown in figure 2. Then we want to compute a line
parameter value, , for . Letting denote the
projection of onto , we see that and are similar, so

(4)

Similar calculations are done to compute , and an interval for is computed as
well. If these intervals overlap, the triangles intersect.

If the triangles are co-planar, they are projected onto the axis-aligned plane
where the areas of the triangles are maximized. Then a simple two-dimensional
triangle-triangle overlap test is performed. First, test all closed edges of for inter-
section with the edges of . If any intersection is found, then the triangles intersect.

2

(a) Intersecting triangles

If all , and , then the triangles are co-planar, and this case
is handled separately and discussed later. If not, the intersection of and is a
line, , where is the direction of the line and is some
point on it. Note that due to our previous calculations and rejections, both triangles
are guaranteed to intersect . These intersections form intervals on , and if these
intervals overlap, the triangles overlap as well. A similar interval test is used in a
different context by Laidlaw et al. [Laidlaw86]. Two situations that can occur are
depicted in figure 1.

L L

Figure 1: Triangles and the planes in which they lie. Intersection intervals are
marked gray in both figures. Left: the intervals along overlap as well as the
triangles. Right: no intersection, the intervals do not overlap.

Now, assume that we want to compute a scalar interval (on) that represents the
intersection between and , and that, for example, and lie on the same
side of and that lies on the other side (if not, you have already rejected it). To
find scalar values that represent the intersection between the edges and
and , the vertices are first projected onto :

(3)

The geometrical situation is shown in figure 2. Then we want to compute a line
parameter value, , for . Letting denote the
projection of onto , we see that and are similar, so

(4)

Similar calculations are done to compute , and an interval for is computed as
well. If these intervals overlap, the triangles intersect.

If the triangles are co-planar, they are projected onto the axis-aligned plane
where the areas of the triangles are maximized. Then a simple two-dimensional
triangle-triangle overlap test is performed. First, test all closed edges of for inter-
section with the edges of . If any intersection is found, then the triangles intersect.

2

(b) Non-intersecting triangles

Figure 5.5: Figure illustrating the relationship between the interval on L that each triangle
makes, and whether or not they intersect one another.

Triangle TB comprises of vertices V B1 , V B2 and V B3 , where vertices V B1 and V B2 lie on the same

118

side of πA (i.e. their signed distances to πA have the same sign), and vertex V B3 lies on the other

side of πA. The edge connecting V B1 to V B3 intersects L at the point denoted E (see Figure 5.6).

Figure 5.6: The geometry of triangle TB three-dimensional space. V Bi are the vertices of TB,
KBi are the projections of these vertices onto πA. Points E and F are the points at which the
lines V B1 V

B
3 and V B2 V

B
3 respectively intersect the plane πA. Finally, the line L is the (infinite)
line of intersection between the planes πA and πB.

Let KBi denote the projection of V Bi onto the plane πA. It can be readily seen that the Euclidean

distance from V B1 to E is proportional to the Euclidean distance from V B1 to KB1 (denoted dV B1), and

also that the Euclidean distance from V B3 to E is proportional to the Euclidean distance from V B3

to KB3 (denoted dV B3). It can also be seen that the triangles 4V B1 EKB1 and 4V B3 EKB3 are similar,

therefore the constant of proportionality is the same for both cases.

The distances dV Bi are already known (they had been computed previously from Equation 5.1a).

Using the fact that 4V B1 EKB1 and 4V B3 EKB3 are similar, the coordinates of point E can be readily

computed through interpolation between points V B1 and V B3 (linear interpolation will be exact since

the line V B1 V
B
3 is straight):

119

E = V B1 +
(
V B3 − V B1

) dV B1
dV B1 − dV B3

(5.3)

The values of x0, y0 and z0 in Equation 5.2a can then be set to equal E (this is valid since

(x0, y0, z0) is any point on L, and E is a point on L). The corresponding parameter value at point E

(denoted tE), is therefore 0 (tE = 0 from Equation 5.2a). All remaining parameter values at other

points along L will therefore be specified relative to this point.

The coordinates of point F in Figure 5.6 are then found in the same way as that of point E

(i.e. via interpolation between vertices V B2 and V B3). The corresponding parameter value at point

F (tF), can then found from Equation 5.2a.

The scalar interval on L that triangle TB makes has now been identified (tE ≤ t ≤ tF). What

remains is to find the scalar interval that triangle TA makes on L. This is achieved via the same

method as that of triangle TB. Once both scalar intervals have been computed, all that remains is

to test if the two intervals overlap. If the two intervals overlap, the triangles intersect one another,

and vice versa.

Note that, in order to reduce the required computational effort, the triangles TA and TB, and the

line L can be projected onto the Cartesian coordinate plane which L is most closely aligned (i.e. the

plane that maximises the projected interval lengths). This projection is valid since if the intervals

on L overlap, then the projected intervals will also overlap (and vice versa). The projected intervals

are then computed via the method outlined above. This reduces the three-dimensional problem to

a simpler two-dimensional one.

5.4 Inter-Grid Interpolations

The goal of the inter-grid interpolation algorithm is to transfer information from a donor mesh to

provide the boundary conditions for a receiving grid. There are several different methods of achieving

this, many of which have been briefly introduced in Chapter 2. In this section, numerical details of

both linear interpolation and the semi-conservative Mass-Flux Based Interpolation (MFBI) method

of Tang et. al. [1] shall be considered.

120

5.4.1 Linear Interpolation

Bilinear or trilinear interpolation can be used for the inter-grid information transfer in two or three

spatial dimensions respectively. However, in general, the interpolation stencil will not be known

prior to an interpolation being conducted. The following procedure is therefore carried out.

Suppose we wish to determine an interpolated value of φ at the point P = (x, y, z). To start,

a three-dimensional interpolation stencil is defined as the hexahedron that has vertices that are

coincident with the cell centres of the underlying donor cells (the cell centres are used since we wish

to interpolate from the cell centre values on the donor grid), and that point P lies within. The

interpolation stencil will therefore consist of eight donor cells, each contributing an octant to the

overall interpolation stencil. The definition of the interpolation stencil is further specified by stating

that, if cell (i, j, k) is one donor cell contributing to the interpolation stencil, then the other donor

cells will be cells (i + 1, j, k), (i + 1, j + 1, k), (i + 1, j + 1, k + 1), (i + 1, j, k + 1), (i, j + 1, k + 1),

(i, j+1, k) and (i, j, k+1). That is, interpolation stencils that are larger than necessary (for example,

comprising of the cell (i+ 2, j, k)) are not permitted.

Close to, or on computational boundaries, there may not be any interpolation stencil available.

To resolve this, halo cells are used on all boundaries, which may form part of the interpolation

stencil, thereby making it possible to interpolate at any point in the computational domain, even

points that lie on boundaries. For some types of computational boundary, these halo cells may have

a geometry that is a mirror of the adjoining boundary cell. Alternatively, they may have zero volume

and be essentially a quadrilateral shape that is identical to the quadrilateral boundary face.

For a given donor grid, there are (Ni+ 1)× (Nj+ 1)× (Nk+ 1) candidate interpolation stencils

(where Ni, Nj and Nk are the number of cells in the donor grid, excluding halo cells, in the i, j and

k directions respectively). While several of these interpolation stencils can be immediately discarded,

due to them comprising of unused or interpolation donor cells (see Section 5.2), there will, in general,

still be several candidate interpolation stencils remaining. The only valid interpolation stencil is the

one that point P lies within. If any other stencil were to be used, then a linear extrapolation would

be performed rather than a linear interpolation. Extrapolations should always be avoided since

they are guaranteed to generate unbounded solutions for a one-dimensional extrapolation (assuming

there is actually a variation in φ between the donor cells), and are hence very likely to generate

unbounded solutions in two or three spatial dimensions. This is particularly problematic if negative

121

turbulence quantities are generated through an unbounded extrapolation.

Determining which interpolation stencil that point P lies within, from all of the (Ni + 1) ×

(Nj + 1) × (Nk + 1) available stencils, can be a very costly process, especially for non-Cartesian

grids. In order to identify the correct interpolation stencil, one possible algorithm would be to visit

each candidate interpolation stencil in turn, splitting each quadrilateral face of the interpolation

stencil into two triangles. The three vertices of one of these triangles is then combined with the

point P to form a tetrahedron. By repeating this for all twelve triangles, twelve tetrahedral volumes

are identified. If the sum of the volumes of all twelve tetrahedrons is equal to the volume of

the hexahedral candidate interpolation stencil, then the point P is inside the interpolation stencil.

Alternatively, if the sum of the volumes of the twelve tetrahedrons is greater than the volume of

the interpolation stencil, the point P is outside of the candidate interpolation stencil, and the next

candidate interpolation stencil should be tested.

For a donor grid comprising of millions of candidate interpolation stencils, computing the volume

of twelve tetrahedrons and one hexahedron for each can quickly become prohibitively expensive.

Furthermore, the above algorithm can fail if P is close to one of the candidate interpolation stencil’s

quadrilateral sides. This failure is due to the assumed piece-wise planar quadrilateral sides (consisting

of two triangles), while the actual sides of the interpolation stencil may be non-planar. There may

therefore be gaps between adjacent assumed piece-wise planar candidate interpolation stencils. If P

lies within one of these gaps, there will be no available interpolation stencil. Note that, while other

algorithms are available, the other algorithms considered suffered a similar fate when P lies close

to one of the faces of the stencil. For this reason, as well as due to the high computational costs

associated with the volume computations, the identification of the actual interpolation stencil is not

attempted prior to computing interpolation coefficients. Instead, all candidate interpolation cells

on the donor grid whose bounding box overlaps the point P are identified (where the bounding box

axes are aligned with the Cartesian coordinate system). Details of the algorithm used to efficiently

achieve this will be given in Section 5.5. For Cartesian grids, the bounding box test will return the

actual interpolation stencil. However, in general non-Cartesian grids, there may be more than one

candidate interpolation stencil whose bounding box overlaps the point P , but the total number of

candidate stencils identified will usually be low (for stencils with an aspect ratio of around unity, a

maximum of eight candidate stencils will be identified).

For the first of the candidate stencils identified via the bounding box test, interpolation coef-

122

ficients are computed. To find the interpolation coefficients, a trilinear interpolation would give

expressions of the form;

x =

8∑
i=1

Nixi y =

8∑
i=1

Niyi z =

8∑
i=1

Nizi (5.4)

where (xi, yi, zi) are the coordinates of the vertices that make up the candidate interpolation stencil,

and the N ’s are evaluated from the interpolation coefficients (ϕ, χ and ψ) by;

N1 ≡ (1− ϕ)(1− χ)(1− ψ) N2 ≡ ϕ(1− χ)(1− ψ)

N3 ≡ (1− ϕ)χ(1− ψ) N4 ≡ (1− ϕ)(1− χ)ψ

N5 ≡ ϕ · χ(1− ψ) N6 ≡ ϕ(1− χ)ψ

N7 ≡ (1− ϕ)χ · ψ N8 ≡ ϕ · χ · ψ (5.5)

In the definitions given by Equation 5.5, the values ϕ, χ and ψ are the unknown interpolation

coefficients that we wish to determine. We therefore have a system of three nonlinear equations (i.e.

Equations 5.4) involving the three unknown interpolation coefficients.

Letting Fi(ϕ, χ, ψ) denote the functional relations to be zeroed (i.e. the relations
∑8
k=1Nkxk−x,

and similarly for the y and z equations), a Taylor series expansion about the point P yields:

Fi(ϕ+δϕ, χ+δχ, ψ+δψ) = Fi(ϕ, χ, ψ)+
∂Fi
∂ϕ

δϕ+
∂Fi
∂χ

δχ+
∂Fi
∂ψ

δψ+O(δϕ2)+O(δχ2)+O(δψ2) (5.6)

By neglecting second order and higher terms, and by setting Fi(ϕ+ δϕ, χ+ δχ, ψ + δψ) to zero,

a set of linear equations for the corrections (δϕ, δχ and δψ), that move the function closer to zero

are obtained:

123

δϕ =
−Fi(ϕ, χ, ψ)− ∂Fi

∂χ δχ−
∂Fi

∂ψ δψ)
∂Fi

∂ϕ

(5.7)

δχ =
−Fi(ϕ, χ, ψ)− ∂Fi

∂ϕ δϕ−
∂Fi

∂ψ δψ)
∂Fi

∂χ

(5.8)

δψ =
−Fi(ϕ, χ, ψ)− ∂Fi

∂ϕ δϕ−
∂Fi

∂χ δχ)
∂Fi

∂ψ

(5.9)

Once the corrections have been obtained, the variables ϕ, χ and ψ are updated via;

ϕNEW = ϕOLD + δϕ (5.10)

χNEW = χOLD + δχ (5.11)

ψNEW = ψOLD + δψ (5.12)

and the process is repeated in an iterative manner. This process is essentially the Newton-Raphson

method, applied to nonlinear systems of equations.

More often than not, the Newton-Raphson method converges remarkably quickly (tests conducted

in this project have shown that typically only 4-5 iterations are required to bring the residuals

of Equations 5.4 to negligible levels, with each iteration requiring only around 150 floating point

operations). Convergence can be slower for interpolation stencils that are of very high aspect-ratio,

since in this case the residual of one equation would have to be reduced by several orders of magnitude

lower than its convergence criterion in order to further reduce the residuals of the other equations.

For exceptionally high aspect ratio interpolation stencils, this could pose a problem, since if the

residuals of two of the three equations reaches machine accuracy, the other equation will not change

(even if not converged). However, it has been found that typical aspect ratios for which this problem

arises are significantly higher than those which would be used in practical computations, so the issue

is of little concern.

For the point (x, y, z) to lie within the interpolation stencil that was used above, the values of

ϕ, χ and ψ must all lie between 0 and 1. If (0 ≤ ϕ ≤ 1), (0 ≤ χ ≤ 1) and (0 ≤ ψ ≤ 1) all hold,

then the correct interpolation stencil was assumed above and we have found the required values of

the interpolation coefficients. However, if any of the interpolation coefficients lie outside the values

124

of 0 to 1, a new candidate interpolation stencil is tested. The new interpolation stencil will be

the next candidate interpolation stencil identified by the bounding box test. The nonlinear system

(Equations 5.4) is then re-evaluated based on the new interpolation stencil. This is repeated until

the correct interpolation stencil is found.

It can be shown that the convergence rate of Newton’s method is quadratic, provided the initial

guess is sufficiently close to the final solution [55]. In the present code, an initial guess of 0.5 has been

used for all three variables. This was selected since for the correct interpolation stencil, the values

of all three variables will lie between 0 and 1. If the correct interpolation stencil was not selected

above, the iterative solution may diverge (detected by the residuals exceeding a predefined value),

or the number of iterations to reach convergence may be high. To avoid wasted computation time,

the iterative procedure should be terminated as soon as divergence is detected, or once the number

of iterations exceeds the maximum permissible number (set to 15 iterations in the present study).

The maximum number of permissible iterations should be set high enough to ensure than the correct

interpolation stencil is not erroneously discarded due to non-convergence, whilst also ensuring that

the number is low enough to avoid excessive computation. The value of up to 15 iterations was

chosen to satisfy these requirements, but may not be universally applicable (particularly for high

aspect ratio grids). The value is therefore user adjustable, however the default value has been found

to work for all cases considered in the present study.

Further computation time can be saved by terminating the iteration process early if values of the

interpolation coefficients are outside of the range of 0 to 1 (i.e. the wrong interpolation stencil was

selected), even if the system is converging. This is implemented by defining an initial convergence

criteria, which is several orders of magnitude larger than the ultimate convergence criteria. Once the

residuals satisfy the initial convergence criteria, further iterations are only performed if the correct

interpolation stencil has been identified.

Once the correct interpolation stencil, and the associated values of the interpolation coefficients,

have been identified (where each coefficient lies between 0 and 1), the interpolated value of any

quantity, φ, at point P is given by;

φ ≈
8∑
i=1

Niφi (5.13)

By finding the interpolation stencil and interpolation coefficients through the above procedure,

125

rather than identifying the correct stencil beforehand, the overall algorithm has been found to be

quick and robust (even when P lies on a face of the interpolation stencil).

Where more than one grid is available for interpolation, interpolation is conducted from the donor

grid whose donor cells are a closest match, in terms of size, to the cell size of the receiving grid at

point P . This minimises any unnecessary heterogeneity in cell size, thereby improving solution

continuity between sub-grids.

5.4.2 Mass-Flux based interpolation

Linear interpolation is, in general, non-conservative (unless the grids are aligned in a very limited

number of specific ways). In an attempt to enforce the conservation of mass over any arbitrary

arrangement of overset grids, the Mass Flux Based Interpolation method (MFBI) can be used. The

MFBI method of Tang et. al. [1] has already been introduced in Chapter 2, where the basic idea

and selected results from the method were outlined. In this section, implementation details of the

method are presented. To start, the necessary conditions required for the conservation of mass

over overset grids are derived. However, it has been noted in Chapter 2, and in [1, 17], that the

enforcement of the conditions is very difficult (if not impossible) to implement for a general overset

grid, especially in three dimensions. A second order approximation to this condition is therefore

enforced in the MFBI method, hence the MFBI method is, strictly speaking, only fully conservative

in the limit of zero grid spacing (as are all other interpolation methods at this rather impractical

limit). The method is hence referred to as semi-conservative. Despite the strictly non-conservative

nature of the MFBI method, satisfactory results have been reported in [1], and the results of the

present code seem to mirror this success.

The main issue with standard linear interpolation, with regards to conservation issues, is not due

to the order of accuracy of the interpolation method (linear interpolation is second order accurate

with respect to grid sizing), but rather is due to the locations where the interpolations are carried

out. The requirement of treating the interpolation boundaries in a manner that is consistent with

the underlying discretisation scheme for standard cells, necessitates the use of halo cells (or ghost

cells) at the interpolation boundaries (see Section 5.7 for further details). Interpolating at the halo

cell centres, and then constructing the mass flux through the interpolation boundary (via a weighted

average of the halo and adjoining cell’s velocity values), generally leads to a non-conservative formu-

lation since there is no guarantee that the mass flux entering through one interpolation boundary

126

face will be balanced by mass flux through other boundaries. If one were to interpolate for the

mass flux at the interpolation boundary (in addition to interpolating for the primitive variables

at the halo cells), the conservation of mass could be assured (to within second order accuracy),

however there would be inconsistencies between the primitive variables at the cell centres, and the

mass flux through the cell’s face. These inconsistencies can prevent convergence. The goal of the

MFBI method is to derive interpolated values for the three velocity components at the cell centre

of interpolation cells, that when averaged onto the interpolation boundary, result in a conservative

mass flux through the boundary.

Conditions for global mass conservation on overset grids

Consider the overset domain sketched in Figure 5.7. In this figure, the overall domain, Ω, is delineated

by the union of the subdomains, ΩA and ΩB (that is Ω = ΩA ∪ΩB). The boundary of Ω is labelled

Γ, which can be written as;

Γ = ΓA − Γa + ΓB − Γb

where ΓA is the boundary of the subdomain ΩA, and Γa is the portion of ΓA that is overlapped by

ΩB (and similarly of ΓB and Γb). This is illustrated in Figure 5.7.

Figure 5.7: A sketch of the grids used to derive the conservative interface conditions.

Global mass conservation requires that;

∫
Γ

~V · ~n dS =

∫
ΓA

~VA · ~n dS −
∫

Γa

~VA · ~n dS +

∫
ΓB

~VB · ~n dS −
∫

Γb

~VB · ~n dS = 0 (5.14)

where ~V is the velocity vector, and ~n is the unit vector in the wall-normal direction, pointing

127

outward. The superscripts A and B indicate which sub-domain the velocity vector is computed

from.

Since conservation over each sub-domain is assured in the finite volume method, we have;

∫
ΓA

~VA · ~n dS = 0

∫
ΓB

~VB · ~n dS = 0 (5.15)

Combining the results of Equations 5.14 and 5.15 one obtains;

∫
Γa

~VA · ~n dS +

∫
Γb

~VB · ~n dS = 0 (5.16)

Since the boundary Γa + Γb forms a closed loop, the net mass flux through this loop must be

zero for physically relevant solutions. Combining this with the fact that the overlap region belongs

to both sub-domains, hence the net mass flux through Γa + Γb should be zero when computing the

velocity vector from either sub-domain, gives us the following conservation relations;

∫
Γa

~VA · ~n dS +

∫
Γb

~VA · ~n dS = 0∫
Γa

~VB · ~n dS +

∫
Γb

~VB · ~n dS = 0 (5.17)

Combining the results of (5.16) and (5.17) yields the following conditions for the global conser-

vation of mass;

∫
Γa

~VA · ~n dS =

∫
Γa

~VB · ~n dS∫
Γb

~VA · ~n dS =

∫
Γb

~VB · ~n dS (5.18)

Equations 5.18 state that, for the global conservation of mass over a set of overset grids, the

same mass flux through an internal boundary must be obtained, regardless of which domain is used

to compute the velocity vector. However, the enforcement of this condition is extremely difficult for

128

general grids, especially in 3D.

The semi-conservative approach

To demonstrate the MFBI method, consider the grids in Figure 5.8. For the purpose of this discus-

sion, we shall assume the grids in this figure are 3D and extend in the ζ direction, into the page

(with k indexing the nodes in this direction). The method can just as easily be applied in 2D if

desired. In the MFBI method, a discrete approximation to Equation 5.18 is enforced on S, where

S is the interpolation boundary of the grid. The cells at i = 1 are extra ‘halo’ cells that have been

added to the grid in order to store the boundary variables.

Figure 5.8: The 3D grids used to demonstrate the MFBI method. Grids are extend in the ζ,
k direction into the page.

A semi-discrete (i.e. partially discretised), second-order approximation to the condition in Equa-

tion 5.18 can be made through the mid-point rule, which yields;

∑
j,k∈S

(
U1

J

)A
3/2,j,k

∆η∆ζ ≈
∫
q

(
U1

J

)B
q

dη dζ (5.19)

129

where U1 is the contravariant velocity component in the direction normal to the internal boundary

S. Note that the right hand side of Equation 5.19 is not discritised at this stage for reasons that will

become apparent. The summation on the left hand side of Equation 5.19 is conducted over each cell

face of ΩA along the boundary S. The integral on the right hand side of Equation 5.19 is conducted

over the infinite number of points (q), that make up the intersection of the surface (S) with the ΩB

subdomain.

Computing the right hand side of 5.19 would require the integrand be known at all points, q. The

enforcement of this condition (or even a discretised version of the condition) is extremely difficult.

Hence Tang et. al. [1] proposed the following approximation;

∑
j,k∈S

(
U1

J

)A
3/2,j,k

∆η∆ζ =
∑
j,k∈S

[
=AB (u)

1

J

]
3/2,j,k

∆η∆ζ (5.20)

where =AB()i is the operator that interpolates the Cartesian velocity components from subdomain

ΩB to subdomain ΩA (at the centre of the faces making up S), and then computes the resulting

contravariant velocity component, U i (in this case the contravariant velocity component is in the

direction 1, normal to the internal boundary). Linear interpolation was used by Tang et. al. to

interpolate the Cartesian velocity components (i.e. the method discussed in Section 5.4.1 can be

used). In Equation 5.20, rather than computing the mass flux through S from subdomain ΩB

exactly (which would require the integrand of Equation 5.19 be known at all the points q), the

velocity components are interpolated from ΩB onto the centre of the faces of ΩA that make up S.

These interpolated values are then used to construct an approximate mass flux from ΩB .

Clearly, Equation 5.20 can be satisfied by setting the U1 contravariant velocity component on

subdomain ΩA to the contravariant velocity computed from the interpolated Cartesian velocity

components. In other words;

(
U1

J

)A
3/2,j,k

=

[
=AB (u)

1

J

]
3/2,j,k

(5.21)

In order to find the boundary values of the contravariant velocity (U1 at i = 1), Equation 5.21

needs to be approximated in terms of its value at surrounding nodes. To achieve this, the term

130

(
U1

J

)A
3/2,j,k

in equation 5.21 is approximated to second order accuracy using a central difference

interpolation. This is consistent with the way the net mass imbalance (ṁ∗) is evaluated in the

SIMPLE algorithm, since Rhie-Chow velocity interpolation is not applied to the boundary faces.

Through a central difference interpolation, the following is obtained;

(
U1

J

)A
3/2,j,k

≈ 1

2

[(
U1

J

)A
1,j,k

+

(
U1

J

)A
2,j,k

]
≈

[
=AB (u)

1

J

]
3/2,j,k

(5.22)

or, upon rearranging;

(
U1

J

)A
1,j,k

= 2

[
=AB (u)

1

J

]
3/2,j,k

−
(
U1

J

)A
2,j,k

(5.23)

Equation 5.23 imposes a restriction to the contravariant velocity component, U1 that must be

satisfied for the discrete approximation of the conservation of mass to hold.

The remaining contravariant velocity components, U2 and U3, and the pressure, are linearly

interpolated onto the boundary node as follows;

(
U2

J

)A
1,j,k

=

[
=AB (u)

2

J

]
1,j,k

(5.24)

(
U3

J

)A
1,j,k

=

[
=AB (u)

3

J

]
1,j,k

(5.25)

(P)
A
1,j,k =

[
=AB (P)

]
1,j,k

(5.26)

Other problem specific flow variables, such as k and ε for example, are linearly interpolated in a

manner similar to that of the pressure.

Equations 5.23, 5.24 and 5.25 are three equations involving the three contravariant velocity com-

ponents. In general, the three contravariant velocities will depend on the three Cartesian velocity

components. It is these Cartesian velocity components that need to be specified at the bound-

ary. Hence, Equations 5.23, 5.24 and 5.25 can instead be interpreted as representing a system of

three (linear) equations involving the three unknown Cartesian velocity components. This system

131

is inverted, and the resulting (semi-) mass conserving velocity components are used as boundary

conditions.

The MFBI method, discussed above, can be thought of as linearly interpolating two of the three

Cartesian velocity components (and the pressure), and then deriving constraints on the third velocity

component that conserves mass.

5.5 Binary search trees, Alternating digital trees, and geo-

metric intersection testing

It has been seen in the preceding sections that determining which interpolation stencil point P lies

within, out of potentially millions of candidate interpolation stencils, is a frequently encountered

problem in the interpolation algorithm. A first step in solving this problem is to find all interpola-

tion stencils that have a bounding box that intersects the point. Hence, one could simply visit each

candidate interpolation stencil in turn, and generate a bounding box for the given interpolation sten-

cil (note that each bounding box has extremities that are coincident with those of the interpolation

stencil, and has axis that are Cartesian aligned). By then testing if xmin ≤ P ≤ xmax holds, one

can determine if the current interpolation stencil has a bounding box that engulfs point P (where

xmin and xmax are the position vectors of the minimum and maximum extremities of the bounding

box respectively). In three spatial dimensions, this test requires six comparisons for each candidate

bounding box, in addition to the forty-two comparisons required in constructing the bounding box

(comprising of seven min() function calls for each of the three spatial dimensions, in addition to

seven max() function calls for each spatial dimension, assuming each call returns the minimum, or

maximum, of two numbers). For millions of candidate bounding boxes, this exhaustive algorithm

would be costly.

A related algorithm, that has application in hole cutting (see Section 5.2), is to determine which

bounding box or boxes, out of potentially millions of candidate boxes, a given bounding box intersects.

In this case, the inequalities xAmin ≤ xBmax and xAmax ≥ xBmin must both be satisfied (where the

superscripts, A and B, denote the current candidate box and the given test box respectively).

Again, an exhaustive algorithm would be costly for large grids.

An alternative to these exhaustive algorithms is to use an Alternating Digital Tree (ADT) search

algorithm, as proposed by Bonet et. al., [56]), which is similar to the binary search tree method

132

commonly used in various branches of computer science, but with the important difference that the

ADT algorithm has multi-dimensional geometric searching applications. In the remainder of this

section, the various search algorithms will be presented. Binary search trees will first be introduced

in Section 5.5.1, as they form the basis of the ADT search algorithm. A basic ADT algorithm will

then be presented in Section 5.5.2, which can be used to quickly find a given point from a list of

millions of candidate points. While this ADT search algorithm has no practical use in the overset

code considered here, it does form the basis of the more advanced ADT method involving geometric

intersection, which is used in the present code. Finally, the geometric intersection ADT algorithm,

which is used for determining which bounding box (or boxes) intersect a given test bounding box,

will be presented in Section 5.5.3. Note that this latter algorithm can also be used for finding all

bounding boxes that engulf a given point, as is frequently required for the interpolation algorithm,

simply be setting the test box to a singular point (or rather, in order to avoid the singularity, a

negligibly small box).

5.5.1 Binary Search Trees

A binary search tree is a non-sequential data structure that can be used to search through lists in

O(log n) time at best (but O(n) time at worst). An exhaustive algorithm, on the other hand, would

search through lists in O(n) time for all cases. The binary tree method therefore offers significant

cost savings over an exhaustive search for most cases, especially for those involving large datasets,

and in any case, is no worse than an exhaustive search.

The data items in a binary search tree are stored non-sequentially in the computer’s memory.

That is, any given data item can be stored at any arbitrary address in computer memory, with no

logical link required between the tree’s topological structure and the computational memory address

locations. To achieve connectivity between the data, each data item is extended by the addition

of two pointers, known as the left and right links, to form a node. The added links can point to

the address of another node (where another data item, and associated pointer links are stored),

or can be null (pointing to nothing). Every node, except for the first node inserted into the tree

(known as the root node), will have exactly one link pointing to it. The root node will have no links

pointing to it. The left and right links are connected to other nodes to form a tree-like structure,

as illustrated in Figure 5.9. Figure 5.10 shows the topological structure of a simple tree, and one

possible arrangement of the tree in computational memory. The nodes are arranged in a hierarchical

133

manner, with the root node (i.e. node A in Figure 5.10(b)) having a hierarchy of 0. The nodes

linked to the left and right of the root node, if present, have a hierarchy of 1 (i.e. nodes B and C

in Figure 5.10(b)), and nodes linked to these nodes will have hierarchy 2 (i.e. nodes D and E in

Figure 5.10), and so on. This hierarchy numbering will become useful later on in this section. By

starting at the root node, one can traverse to any other node on the tree, simply by following either

the left or right links. That is, there is a path from the root to every other node on the tree. The

opposite, however, is not true; there is no way of traversing from node C say, back to the root, as

node C has no knowledge of the memory address of node A (the left and right links point to nodes

D and E respectively, whereas there are no links pointing to node A). All searches of the tree must

therefore start at the root node.

Figure 5.9: A large binary search tree.

The nodes of a binary search tree are inserted into the tree structure based on the values they

contain. Any values that are part of a node’s left sub-tree are always less than the node’s value

and any values in the right sub-tree are always greater than the node’s value. It is this ordering

that enables the quick searching through large datasets; if the value that is being searched for is less

than the root value, one would traverse to the left sub-tree and immediately discard all nodes on

the right sub-tree. One would then repeat this analysis on the left sub-tree, with the left branch of

the sub-tree being traversed if the value being searched for is less than the sub-tree’s root value, and

vice versa. This continues until the value being searched for is equal to root value of the sub-tree

being considered, at which point the value will have been found, and the search is complete. If a

134

Figure 5.10: A simple binary search tree, and one possible arrangement of nodes in
computer memory.

node with no links to the left or right is encountered (known as a leaf of the tree), and the value

being searched for is not equal to this leaf’s value, then the search fails, and one can deduce that

the search item was not present anywhere in the tree (and hence was not present in the original

dataset). An example follows in order to demonstrate the concept.

Tree generation, and node insertion

When creating a binary search tree, one starts with an unsorted list of data items that we wish to

search through. In developing a virtual address book, for example, we may have a list of names. Lets

say that this list comprises of the names Vicky, Alex, Adam, John, Holly, Zofia, William and

Tom. The first node of the tree could be chosen arbitrarily, but usually the first data item of the list

is chosen (in this case, Vicky). There is little to no advantage to be gained by selecting any other

data item, so the first data item may as well be used. The first node, Vicky, is placed at the root

of the tree.

When inserting the next data item from the list, one would insert to the left of the root if the

next data item is less than, or equal to the root value, and one would insert to the right of the root

if the next data item is greater than the root value. In the context of the virtual address book,

‘less than’ can simply be interpreted as coming alphabetically before, while ‘greater than’ implies

alphabetically after. Hence, if the next data item is alphabetically before Vicky, the left branch is

135

taken, while if the next data item is after Vicky, the right branch is taken. The next data item,

Alex, would therefore be inserted to the left of Vicky.

When inserting the third data item, Adam, one would start at the root, and traverse to the left

(since Adam is alphabetically before than Vicky). Since this location is already occupied (by the

node Alex), the address of Adam cannot be stored here, so the process is repeated on the sub-tree

where Alex is at the root. This time, the branch to the left of Alex will be traversed if the data item

is less than (or equal to) Alex. Alternatively, the right branch will be traversed if the data item has

a value that is greater than Alex. The node Adam will therefore be placed to the left of Alex.

This process is repeated until all data items of the list are inserted into the tree. The resulting

tree for the case outlined above is shown in Figure 5.11.

Vicky

Alex

Adam John

Holly

Zofia

Tom

William

Figure 5.11: The resulting binary search tree for the virtual address book.

136

Binary Tree Performance

Each level down the tree (each increasing hierarchy) splits the data off into an ever decreasing fraction

of the overall dataset. It can be seen that, if there are an equal number of nodes on the left and

right branches of a tree, half of the data will be eliminated from the search at the first comparison.

Similarly, if there is an equal number of nodes on the left and right branches of each subsequent

subtree, half of the remaining data will be eliminated at each subsequent comparison. This ideal

case is referred to as a perfectly balanced tree, and it is this case that leads to the optimum O(log n)

search time. As n → ∞, most trees will approach a reasonably well balanced state, provided that

there is a sufficient variation in the initial dataset, so search performances close to logarithmic time

can usually be expected for large datasets.

Conversely, for trees where each node is connected to only one other node, the binary search

tree offers no improvement over an exhaustive algorithm, and the tree is known as a degenerate

tree. Possible layouts of such trees are shown in Figure 5.12. However, even for this worst case, the

binary search performs no worse than an exhaustive algorithm, so there is nothing to lose in its use.

Furthermore, these degenerate trees are thankfully very rare for large datasets, and can be easily

avoided. In fact, degenerate trees will only occur if the initial dataset that is used to construct the

tree is already ordered.

It can be noticed from the preceding description of the binary search tree, that the overall shape

of the tree, and hence the performance of any subsequent searches, will be influenced by the order

in which the nodes are inserted into the tree. Generally it is be a good idea to insert items that

are expected to be searched for frequently before items that will be seldom searched for. This way,

the frequently searched items will be near the root of the tree, and hence will be found quickly.

However, in the search algorithms implemented in the present code, the frequency of searching for

each stencil will not be known beforehand, so this optimisation method could not be attempted.

Theoretically, the order of inserting the nodes could also be tuned to provide a tree that is as

balanced as is possible for a given dataset. However, the complexity and cost of optimising the

tree in this way would likely outweigh any advantages, and hence was not considered in the present

study.

137

Figure 5.12: Degenerate Binary Search Trees.

Implementation of a binary search tree algorithm

The implementation of a binary search algorithm is reasonably straight forward in a programming

language that supports recursion (where a function can call itself). Examples of such languages

include Fortran 90, C and C++, among many others. A node insertion function, for example, would

take as its arguments, the address of the node to be inserted, and the address of the root of the tree

(or sub-tree). The function would then evaluate if the node can be placed at the root, or failing

that, if the left or right branch should be traversed (based on the criteria discussed above). If the

left branch is to be used, the insertion function would simply call itself, this time with the second

argument (i.e. the new root) set to equal the address of the left sub-tree’s root. A similar procedure

is carried out to account for the cases where the right branches are to be traversed, thereby com-

pleting the node insertion function. Through the use of recursion, the node insertion function can

be coded in only a few lines, as demonstrated by the following pseudo-code:

A search function can be coded in a manner that is very similar to that of the node insertion

function, again taking advantage of recursive features of modern programming languages. In this

case, one would start at the root and compare the root value’s data with the data being searched

138

Function insertNode(node, root)

begin
if root = NULL then

root ← node’s address
return

end
if node.data ≤ root.data then

call insertNode(node, root.left)
else

call insertNode(node, root.right)
end

end

for. If it is not found, one would traverse to the left or right branches (where the decision of left

or right traversal is based on the criteria discussed in Section 5.5.1), and compare the data of the

left or right sub-tree’s root for equality with the data being searched for. The following pseudo-code

demonstrates this concept:

Function search(data, root)

begin
if data = root.data then

return address of root
end
if data ≤ root.data then

call search(data, root.left)
else

call search(data, root.right)
end

end

If developing a binary search algorithm in a language that does not support recursion, such as

Fortran 77, a pseudo-recursive version of the algorithm could be developed. The basic concept behind

the pseudo-recursive mechanism is to define two versions of the same function (e.g. insertNode1

and insertNode2). The first version of the function will then call the second version, and vice versa.

The code inside each function will be identical to that of the fully recursive version, except for the

function calls, which would instead call the version of the function that would not result in recursion

(see Reference [57] for further details of the pseudo-recursive method). While this method may seem

a little messy, it is far simpler than some of the other methods available for non-recursive languages,

which often require considerable bookkeeping.

139

5.5.2 The basic ADT method

An alternating digital tree search algorithm is similar to the binary search algorithm described in

the previous section (in fact, the ADT method is a specific type of binary search tree). The unique

features of an ADT algorithm, that differentiates it from the basic binary search algorithm, is in

the criteria used in selecting the traversal of the left, or the right branches. In the basic ADT

method, the dataset is a list of points in space. A link between the physical location of the dataset’s

points, and the position of the nodes on the tree is then established. Through the use of this link, a

proportion of nodes can be eliminated from the search at each hierarchy down the tree, as was seen

in the case of the basic binary search tree.

In setting up an ADT, we start with a list of points that we wish to search through (the dataset).

In order to generate the tree, as for a binary search tree, the first data item in the dataset is extended

via the addition of two pointers (the left and right links) to form a node. This node is then inserted

at the root of the tree.

When inserting the remaining nodes, the left or right branches are traversed based on comparisons

of the node’s physical location in one coordinate direction, relative to that of the current subtree’s

root. The selection of the coordinate direction is based on the current hierarchy. For example,

for a two-dimensional dataset, all sub-trees with a root at even hierarchy will branch based on the

node’s x-coordinate. The left branch will be traversed if the node’s x-coordinate is less than, or

equal to, that of the subtree’s root, while the right branch will be traversed if the x-coordinate is

greater than that of the subtree’s root. Similarly, for all sub-tree’s with a root at odd hierarchy,

branches are traversed based on the node’s y-coordinate. This is repeated, in an alternating order,

with alternations between x and y coordinate direction comparisons made all the way down the tree.

As an example, Figure 5.13 shows several points comprising of a sample dataset, with the resulting

ADT for this particular case shown on the right (assuming that the nodes are inserted into the tree

in the alphabetical order in which they are labelled).

For a three-dimensional dataset, comparisons of the x, y and z directions are made at each

hierarchy in cyclic order. Comparisons of the x-coordinate direction are made at all hierarchies

where h
3 − b

h
3 c is equal to zero (where h is the hierarchy, and b c is the floor function1). Similarly,

comparisons of the y and z coordinate directions are made at all hierarchies where the expression,

1The floor function returns the largest integer value that is not greater than its real argument. The expression
h
3
− bh

3
c is therefore equal to the remainder of the quotient h

3
.

140

� � �

��

��

��

��

�

�

�

�

��

��

��
� �

�

��

�

	

	

����������������

	

Figure 5.13: A two-dimensional sample dataset, and the resulting ADT.

h
3 − b

h
3 c, is equal to 1

3 , or 2
3 respectively. As an example, Table 5.1 shows the coordinate direction

that any branching is based upon, for the first seven hierarchies.

h h
3 − b

h
3 c Coordinate direction

0 0 x
1 1

3 y
2 2

3 z
3 0 x
4 1

3 y
5 2

3 z
6 0 x
...

...
...

Table 5.1: Table showing the coordinate direction that traversal is based upon, for the first
seven hierarchies.

More generally, for a n-dimensional dataset, comparisons in the ith-coordinate direction are made

at each hierarchy where h
n − b

h
nc = i−1

n .

When implementing this ADT node insertion algorithm, each node must be aware of its own

hierarchy in order facilitate the bisection process described above. One option would be to store the

hierarchy of each node within the node itself. However, this would result in a waste of computational

storage space. An alternative is to instead take advantage of the fact that all searches (or node

insertions), originate from the root of the tree, where the hierarchy is zero, and that on each traversal,

141

the hierarchy is increased by one. By incrementing the current hierarchy by one, and passing the

result as an argument to the recursive node insertion function on each tree traversal, it is not

necessary to store each node’s hierarchy. The following pseudo-code demonstrates this.

Function ADTinsert(node, root, h)

begin
if root = NULL then

root ← node’s address
return

end

i =
(
h
3 − b

h
3 c
)

if node.xi ≤ root.xi then
call ADTinsert(node, root.left, h+1)

else
call ADTinsert(node, root.right, h+1)

end

end

Once the tree has been generated, searching for a point starts at the root (as was seen for the

binary search tree), and follows the same traversal rules as outlined for the node insertion algorithm,

until the required node is found. By following these rules, any given node can be identified in close

to logarithmic time, provided the tree is reasonably well balanced.

5.5.3 Extending the basic ADT method to solve geometric intersection

problems.

The basic ADT search method of Section 5.5.2 quickly returns a specific node from a list of nodes.

While this basic method is useful for some applications, the method itself is not particularly useful

for the overset algorithms developed for this code. It does however serve as a useful introduction to

an alternative formulation outlined in this section, which is useful in the overset algorithms described

within this chapter. This alternative ADT formulation, tests for the intersection of a finite sized

object (the test object) with other finite sized objects comprising of the dataset.

Valid objects, for which the ADT method is formulated, are Cartesian boxes. Hence, if the

intersection of arbitrary shaped objects is required, the bounding boxes of the objects can be quickly

tested for intersection via an ADT search, eliminating the need for a more expensive intersection test

if the bounding boxes do not intersect. If it is found that the bounding boxes intersect, then further

tests may be performed to determine if the actual objects intersect, using, for example, the triangle-

142

triangle intersection test described in Section 5.3 if ultimately one is performing an intersection test

of two triangles. If the bounding boxes do not intersect, then the objects cannot intersect, thereby

eliminating the need for any further tests.

While the ADT method presented here requires a finite sized object as the test object, the

intersection of a point and a candidate interpolation stencil is a typically required test for the

interpolation algorithm (see Section 5.4.1). This is of little concern, since a point can be suitably

approximated by a small bounding box. In this context, a small bounding box implies a Cartesian

aligned box which is centred on the point, and has extremities that are negligibly far from the point

(e.g. at a small distance such as 1 × 10−30 multiplied by a typical cell dimension, from the point).

By setting up the test object in this manner, all (large) bounding boxes comprising of the dataset,

that engulf the test point can effectively be found.

Note that in theory, the use of a small bounding box to approximate a point could potentially

result in some false positive intersections being reported if the point is very close to the sides of the

dataset’s boxes. However when computing interpolation stencils for such a false positive result, the

interpolation coefficients would lie outside their permissible range of zero to one, hence the stencil

would not ultimately be used anyway.

For the purposes of the overset algorithms considered here, a suitable option for the dataset

Catresian boxes is a list of boxes bounding each cell. To aid expeditious searching for cases where

there are multiple subgrids (as are found in overset simulations), a separate tree is generated for

each subgrid, with each tree’s dataset comprising of all the cells in the given subgrid.

Tree generation

To generate a tree for geometric intersection testing, the first data item of the first grid is used to

form a node (with the addition of the left and right pointers, as described previously), and inserted at

the root of the tree. Remaining nodes are added in the same manner as for the basic ADT algorithm

described in Section 5.5.2, with the exception that traversal is based on comparisons against the

xmin, ymin, zmin, xmax, ymax and then zmax values of the box, in cyclic order at each hierarchy

(where xmin, for example, is the minimum x-coordinate of the bounding box that is being inserted.).

Formally, for a three-dimensional dataset, tree traversal is based on the xmin, ymin or zmin values

of the bounding box when h
6 −b

h
6 c is equal to zero, 1

6 , or 2
6 respectively; similarly, traversal is based

on the xmax, ymax and zmax values when h
6 −b

h
6 c is equal to 3

6 , 4
6 , or 5

6 respectively. The left branch

143

is traversed if the respective coordinate value is less than, or equal to, that of the current subtree’s

root, while the right branch is traversed if the opposite is true.

Intersection testing

When performing a geometric intersection search, we wish to find all bounding boxes that intersect

the test box. Generally, there will be more than one such box (but not necessarily so). Since the

test box is Cartesian aligned, it is fully defined by just two points in space, (a,b), corresponding to

the minimum and maximum extremities of the box respectively. Starting at the root, the root node

is first tested for intersection with the test box. If the inequalities atest ≤ broot and btest ≥ aroot

are both satisfied, then the box at the root intersects the test box, and is therefore added to a list

of intersecting boxes. If, on the other hand, the above inequalities are not both satisfied, the box at

the root does not intersect, it is therefore not added to the list.

Following from the inequalities above, it can readily be seen that if btestx < arootx or atestx > broot

hold, then the boxes cannot intersect. Furthermore, at the first branching, where traversal of the

left and right branches is based on the minimum x-coordinate, all nodes on the right subtree will

have a minimum x-coordinate (ax), that is greater than that of the root. Hence if btestx < arootx

holds, all nodes on the right branch cannot intersect the test box, and the entire right subtree can

be eliminated from the search.

Similarly, at subtrees where the hierarchy is such that branching is based on the maximum

coordinate values (e.g. at hierarchies 4, 5, 6, 10, 11, 12, · · ·), it can be seen that all nodes on the left

subtree will have a maximum coordinate value that is less than that of the subtree’s root. Hence

if atestx > brootx holds, all nodes on the left branch cannot intersect the test box, and the entire left

subtree can be eliminated from the search.

Note that when branching is based on the minimum coordinate value, the above inequalities

give no insight into the suitability of the nodes on the left subtree, hence the left subtree should

be searched in any case, with only the right subtree being selectively searched. Similarly, when

branching is based on the maximum coordinate value, the right subtree should be searched in any

case, with only the left subtree being selectively searched. This leads to a possibility which was

not present in the basic ADT algorithm, where both the left and right branches are searched at any

given hierarchy. The fact that both branches of a subtree may need searching is intuitive since if the

test box were so big that it intersected every bounding box comprising of the dataset, then clearly

144

the list of intersecting boxes should include the entire dataset, requiring every node in the tree to

be visited (i.e. every branch, both left and right, is traversed).

Performance

For the example scenario discussed above, where the test box were so big that it intersected every

bounding box comprising of the dataset, clearly every node of the tree would require an intersection

test. The ADT algorithm in this case would therefore offer no improvement over an exhaustive

search, no matter how well balanced the tree is. Search times are therefore not simply a function of

overall tree size, but are also dependent on the tree’s balance as well as test box size and position.

Specific search time performances are therefore not possible to quantify for a general case. However,

logarithmic search times have been found for practical applications involving hole cutting in the

work carried out for this thesis.

Once the tree has been generated (which is a reasonably expeditious process), it can be used many

times to find interpolation stencils for all interpolation cells (see Section 5.4.1), and for assisting in

the search for all wall-intersecting cells or fully overlapping cells (see Section 5.2), without requiring

any further tree generation. If sliding meshes are used in a time-dependent simulation, any grids

that have been moved in a given time-step must have their tree regenerated in order to remain valid.

However, the tree is generated only once per a time-step, yet is used several times, resulting in an

overall net reduction in computational costs for large datasets.

Alternative Formulations

The alternating digital tree algorithm presented in this section is different to other algorithms re-

ported in the literature (see for example the method of Bonet et. al., [56]). In their method, all

datasets are scaled and translated such that the dataset varies within the interval [0, 1). The scale

factor applied to each coordinate direction is generally different, such that the end result is all data

items lying within a unit cube, with at least one data item lying on each face of the cube (or, for a

two-dimensional dataset, a unit square).

At hierarchies 0 and 1 (for a two-dimensional dataset), the left and right branches split the data

items into values less than or greater than 0.5 for the x and y coordinates respectively (following the

same alternating/cyclic procedure outlined previously), regardless of the relative position between

the data item and the root. For example, Figure 5.14 shows an sample tree following this alternative

145

methodology. Note that node C is placed to the right of node B, despite the fact that node C has a

y-coordinate that is less than that of node B. This is the case since node C has a y-coordinate that

is greater than 0.5, and hence is placed on the right link following this alternative ADT formulation,

regardless of the relative position of the two nodes.

At hierarchies 2 and 3, the left branch will be traversed if the data item has a value in the interval

[0, 0.25) or [0.5, 0.75), in the respective coordinate direction. Alternatively, the right branch will be

traversed if the data item has a value in the interval [0.25, 0.5) or [0.75, 1). Figure 5.15 shows the

link that is made between the branches of the tree, and the positions of the nodes in the unit cube.

Figure 5.14: An alternative ADT formulation based on the method of Reference [56].

Figure 5.15: Relationship between the bisection process and the location of nodes in space,
based on the alternative ADT formulation of Reference [56].

Clearly, the alternative ADT method presented in [56] will generate a different shaped tree, in

146

general, to that of the method presented here. As already outlined, it is generally advantageous to

strive for a tree that is as well balanced as possible, however there is no ‘best’ method as sometimes

the method presented here will perform better than in [56], and vice versa.

Also, the cost of scaling and translating the dataset to a unit cube, and then the subsequent

un-scaling of the result, should be accounted for. Furthermore, each branch traversal is based on

predefined intervals (e.g. [0, 0.25) or [0.5, 0.75) for a two-dimensional dataset at hierarchies 2 and

3), and the upper and lower bounds of the interval therefore need to be computed for each traversal,

leading to additional computational costs. In the ADT method presented here, this is not necessary,

since branching is based purely on the root’s value, which is readily available.

In the present study, both methods have been coded, and it has been seen that for practical

applications involving hole-cutting and finding interpolation stencils, the new algorithm presented

here performed slightly quicker than the method of [56], and is easier to code. That said, both

methods gave a clear improvement over a fully exhaustive search.

5.6 Integration over surfaces with overlapping grids

When using CFD to make predictions of force and moment coefficients, integration of wall shear

stress and pressure forces over a surface is required. Furthermore, for internal flows, an overall bulk

correction is required to ensure that the mass flux entering the domain is balanced by that leaving

the domain (see for example Section 3.6.1), requiring a summation (integration) of mass fluxes over

the inlet and outlet. In an overset grid formulation, there is no guarantee that the surface to be

integrated over (the surface of a wing say), will be made up of just one grid. In general, there may

be several such grids overlapping one another arbitrarily. Cells in the overlap region would require a

weighting to prevent their contribution being counted twice. However, the calculation of a suitable

weighting factor is non-trivial in the general case for cells that partly overlap other grids. This

would require complex (and costly) geometrical analysis to determine the proportion of the cell that

is overlapping.

A far simpler method than attempting to compute a geometric weighting is to remove any

overlapping cells completely, and to fill the ’gap’ with triangular cells, generating a hybrid surface

grid. The underlying primitive variables are then interpolated onto the triangular cells, and the

147

resulting (non-overlapping) surface is integrated over 2. This is known as the ’zipper grid’ method,

as described by Chan and Buming in [53]. An algorithm to facilitate surface integration has been

implemented in the present study, based on the original method of Reference [53]. This section will

describe the implementation details of the algorithm.

Consider the overlapping grids shown in Figure 5.16(a). The objective of the zipper grid algorithm

is to convert the overlapping surface grids of Figure 5.16(a) into a non-overlapping hybrid surface

grid such as that shown in Figure 5.16(b). Non-overlapping grids are first generated by removing

some cells. The gap that this generates is then filled with triangular cells to form a hybrid surface

grid. No new vertices are inserted in the definition of the triangular surface cells, hence the method

is different to traditional unstructured (or hybrid) grid generation techniques, and is somewhat

simpler to implement. Instead, the existing vertices that already contribute to the quadrilateral cell

definitions, are joined together in such a way as to completely fill the gap, whilst also eliminating the

possibility of creating a triangle that overlaps another triangle, or a quadrilateral cell. The triangular

cells that fill the gap resemble a zip arrangement in their structure, hence the name ‘zipper grids’.

Since the integration is to be performed over non-overlapping surface grids, it is first necessary

to ‘remove’ some of the quadrilaterals in the overlap region such that the surface grids are no longer

overlapping. Note that the quadrilateral surface cells are removed from the definition of the zipper

grid, but are not actually removed from computational memory. This is implemented through the

use of a blanking array, Bij . Any cells that are flagged in the array are cells that will not be used

in any subsequent integrations. Initially the blanking array is set to values such that none of the

quadrilateral surface cells are flagged as being blanked, except for those that are associated with

the hexahedral hole cells defined by the hole cutting algorithm (see Section 5.2). Since all hole cells

play no part in the actual flow simulation, and hence would have undefined values stored for their

primitive variables, they clearly should not be used in the integration.

Let Si and Sj be any two subsets, containing the quadrilateral surface cells corresponding to

subgrids Ωi and Ωj respectively. Using the geometric intersection test for bounding boxes, described

in Section 5.5.3, the number of cells on subset Si, that intersect with at least one quadrilateral

belonging to subset Sj is computed, and a list of all such cells is stored. All cells in this list

2Note that the underlying flow solver uses the fully overlapping hexahedral cells to solve the discretised governing
equations, and makes no use of any hybrid surface grids described in this section. The hybrid surface grids are used
only for performing surface integration as a post-processing tool, or for applying a bulk correction on overlapping
grids.

148

(a) Before zipping (b) After zipping

Figure 5.16: Sample overlapping surface grids which we wish to perform integration over.

belong to Si, and are either fully overlapping or partly overlapping Sj . By removing all these cells,

the subsets Si and Sj would no longer be overlapping, as desired. However, the cells are not yet

removed, as it is desirable to remove the cells on the coarsest subset, while preserving cells of finer

subsets. The number of cells on the subset Sj that intersect Si is therefore also computed, and the

overlapping cells of the subset with the fewest number of computed overlaps are removed. That is,

if N(Si) < N(Sj), all overlapping cells on Si are removed, and vice versa. This step is repeated for

all pairs of subgrids. The resulting surface grids after this step are shown in Figure 5.17.

Since a simple bounding box test was used to estimate if cells intersect one another, rather

than determining if the cells actually intersect through a more accurate (but more expensive) test,

more cells than necessary will be blanked for cases where the grid lines are non-Cartesian aligned.

However, the basic bounding box test was used and found to perform well for the applications

considered in the present study.

The next step of the zipper grid algorithm is to identify ordered strings of points that lie on

the gap boundary created in the previous step. This is done in preparation for the final step of the

zipping algorithm, in which the strings are ‘zipped’ together by forming triangular surface cells in

the gap between subsets.

Firstly, each non-overlapping quadrilateral surface cell (i.e. all cells that remain unblanked) is

tested in turn, and if it is found to be adjacent to a gap (i.e. adjacent to a flagged cell in the blanking

array Bij), the common edge between the blanked and unblanked cells is added to a list of unsorted

‘gap boundary edges’.

149

Figure 5.17: The same sample overlapping surface grids, after removing the overlapping cells
from the coarsest subset.

150

Once the unsorted list of all gap boundary edges is generated, the edges in the list are connected

to one another where possible, forming ‘ordered boundary strings’. This proceeds as follows:

• The first string is started by removing the first edge from the unsorted list, and adding the two

points that form this edge to a new list of ordered points (the order in which the two points

are added does not matter). The first and last elements of this list form the beginning and

end of the string respectively.

• Connections are now attempted to be made between either the beginning or the end of the

string, and any of the remaining edges in the unsorted list. An edge can be connected to the

string if the edge shares a common vertex with the string’s end or beginning.

• Where a connection can be identified, the edge that is to be connected is transferred from the

unsorted list to the string, by adding the unique point of the edge (and not duplicating the

coincident points that were used in identifying the connection in the first place). The point

is added to the end of the ordered list if the connection was made with the end of the string,

with the added point forming the new end of the string. Similarly, if the connection was made

with the beginning of the string, the point is added at the beginning of the ordered list, and

the added point forms the new beginning of the string.

• Where no connection can be made between the string, and any of the remaining unsorted

edges, a new string is started. A minimal string will therefore consist of just one gap boundary

edge (i.e. two points), however, in general most strings will be longer than this.

• This process continues until there are no remaining edges in the unsorted list. As a minimum,

this will generate two strings which will be zipped together (in general there may be more than

two strings).

Figure 5.18 shows the ordered strings that are generated by following the above algorithm for

the case considered. Note that in this case, there are four strings generated, corresponding to the

four separate subsets. The number of strings generated will, at a minimum, be equal to the number

of subsets, since strings cannot be connected to one another if they belong to separate subsets

(quadrilaterals from separate subsets share no common vertices).

The next step of the zipping algorithm is to divide each boundary string into segments. The

segments are then matched to one another to form matched pairs of boundary string segments. It is

151

Figure 5.18: Ordered boundary strings (thick lines) and the points used in making up the
strings (circles).

152

these matched pairs of segments that will ultimately be connected to one another in the final step of

the zipping algorithm, with triangular cells bridging the gap. To form a matched pair of boundary

string segments, take any string, Ri. For the first point on Ri (point Pi), find the nearest point

(lowest Euclidean distance) out of all the points on all the other strings (excluding the string Ri) to

point Pi. The point Pi is then matched to the string which contains this nearest point to Pi. The

next point along Ri is then assessed in the same way, and matched to the string that contains the

nearest point to this next point. A segment of Ri is then defined as the set of contiguous points

along the string Ri, that are all matched to the same string. All strings are divided into segments

following these rules. A matched pair of boundary string segments is one where all the contiguous

points in a segment of Ri are matched to the points in a segment of Rj , and vice versa. Figure 5.19

shows the resulting matched pairs of boundary string segments, with each segment pair highlighted

via the use of a separate line colour. In this case, it can be seen that there are five matched pairs

of boundary string segments (ten segments in total). However, in general, there is no relationship

between the number of boundary strings, and the number of segments generated (other than the fact

that the number of segments cannot be less than the number of strings), since each string may be

spit into an arbitrary number of segments, and the number of segments is dependent on the specific

geometry of the subsets.

Figure 5.20 shows a pair of matched boundary string segments. To zip these matched segments

together, the closest two points to one another (one point from each of the two segments) are first

joined, as shown in Figure 5.20, indicated through the use of a thick line.

In the next step of the zipping algorithm, the first triangle is generated. Two of the three

vertices of the triangle are defined from the previous step and are the two points that are closest to

one another (i.e. points Pi and Pj). The third vertex that will be used will be the next contiguous

point along one of the boundary strings, in the positive direction (i.e. toward the end of the string).

Either node Pi+1 or node Pj+1 will therefore be used as the third vertex in the triangular cell’s

definition. The decision of whether to use 4PiPi+1Pj or 4PiPj+1Pj proceeds as follows.

In some cases, where the quadrilateral shape formed by the points Pi, Pi+1, Pj+1 and Pj is

convex, one of the triangles 4PiPi+1Pj or 4PiPj+1Pj may be invalid (due to it overlapping existing

quadrilateral cells, or other triangles). To test if 4PiPi+1Pj is valid, the quad PiPi+1Pj+1Pj is split

along the line Pi+1Pj , forming two triangles 4PiPi+1Pj and 4PjPj+1Pi+1. The normals of these

two triangles are computed, and if both normals have the same sign, then 4PiPi+1Pj is valid. A

153

Figure 5.19: Boundary string segment pairs. Different pairs are indicated through the use of
different coloured lines.

�

�

���

���

Figure 5.20: A sample matched pair of boundary strings, with the closest two points joined.

154

similar test is performed to see if 4PiPj+1Pj is valid, by splitting the quad along the line PiPj+1,

and comparing the sign of the normals of triangles 4PiPj+1Pj and 4PiPi+1Pj+1.

If both triangles 4PiPi+1Pj and 4PiPj+1Pj are valid, as is the case more often than not, then

triangle 4PiPj+1Pj is selected if PiPj+1 ≤ Pi+1Pj , while 4PiPi+1Pj is selected otherwise. This

results in the shortest possible length of the triangle’s edges, and hence the smallest possible triangle

area (in the absence of introducing extra vertices, which would significantly increasing the complexity

of the algorithm).

If one of the triangles 4PiPj+1Pj or 4PiPi+1Pj failed the test above, while the other triangle

passed, then one can deduce that the quadrilateral formed by the points Pi, Pi+1, Pj+1 and Pj

is convex, and the zipping should proceed by selecting the only conclusively valid triangle option.

For example, Figure 5.21 shows the case considered after the insertion of the first triangle. The

quadrilateral formed by the points Pi, Pi+1, Pj+1 and Pj in Figure 5.21 is convex and clearly

4PiPj+1Pj is invalid (it overlaps quadrilateral cells, and fails the test outlined above). Triangle

4PiPi+1Pj is therefore used.

� ���

���

�

Figure 5.21: After the insertion of the first triangle, in this case a convex quad is
encountered. Here it can be seen that only 4PiPi+1Pj is valid.

If neither of the two triangles 4PiPj+1Pj or 4PiPi+1Pj are conclusively valid, then one can

deduce that the quadrilateral formed by the points Pi, Pi+1, Pj+1 and Pj is inverted. In this case,

the algorithm proceeds as for the case where both triangles are valid, with the shortest distance test

155

determining which triangle is used. This usually results in a satisfactory zipping, however this is not

guaranteed and repairs of the zipped gap may be required.

Thankfully, cases requiring repairs are very rare, and only come about if there is a considerable

heterogeneity in the grid spacing ratios between subsets. Since a large heterogeneity in the grid

spacing is best avoided anyway, due to the spurious discontinuities in the solution that can often

result, cases requiring repair were not encountered in the work presented in this thesis. If however, a

repair were to be required, Reference [53] describes a simple method which involves removing the bad

triangle (the one that overlaps existing quadrilateral cells, or other good triangular cells), and also

the two good triangles that are immediately adjacent to the bad triangle, and then simply re-zipping

the local area in the reverse direction (from the end of the string segment toward the beginning).

This simple method can be used to repair most cases even with significant heterogeneity in the grid

spacing ratios. However, this repair technique is not guaranteed to work in all cases, and some

particularly poor grids (poor in the sense that the heterogeneity in the grid spacing ratios between

subsets is exceptionally large) may not be able to be zipped at all without significant modification

of the zipping algorithm. In this case, it is advised that one should regenerate the grids (which is

advisable in any case to avoid other problems associated with such a large heterogeneity).

Once a triangle has been generated, the i index is incremented if the triangle’s definition involved

the point i+1 (i.e. the triangle4PiPi+1Pj was used), while the j index is incremented if the triangle’s

definition involved the point j+ 1. The algorithm then proceeds to insert one triangle after another,

until the end of a string segment is encountered (i.e. until i = imax or j = jmax). Figure 5.22 shows

the result so far for the string segments considered.

Once the end of a string segment is reached, all remaining nodes on the j-indexed segment (that

are after the point Pj) are connected to the point Pi, and vice versa, thereby completing the zipping

in the positive direction. The result of this is shown in Figure 5.23. Once the zipping in the positive

direction is complete, the indexes i and j are returned to the nearest two points that were used at

the start of the zipping, and zipping in the negative direction is commenced, following exactly the

same procedure as outlined for the positive direction. Figure 5.24 shows the final zipped segment

for the case considered.

All matched boundary string segments, as identified earlier and depicted in Figure 5.19, are

zipped following the same procedure, and the result is shown in Figure 5.25(a). It can be seen from

this figure that most of the ‘gap’ between subsets has been triangulated, however there are still

156

�

�

���

Figure 5.22: The zipping proceeds in the positive direction (toward the end of the string)
until the end of a segment is encountered.

Figure 5.23: The end of each segment is connected to the remaining points of the other
segment, thereby completing the zipping in the positive direction.

157

Figure 5.24: The final zipped segment pair.

small ‘pockets’ where no triangles or quadrilaterals are present. These pockets are polygon shaped,

with the edges of the polygon corresponding to parts of the unconnected segments identified earlier,

or the ends of the triangular cells inserted by the zipping procedure. These pockets occur in the

regions where three or more subsets all overlap one another. The pockets are easily triangulated

using a similar method to the method already described for zipping strings. Firstly, the closed loop

of edges that form the pockets are identified. This is done simply by visiting each unblanked cell on

each subset (including the triangular cells added by the zipping procedure, but excluding boundary

cells that are adjacent to the edge of a computational boundary) and testing each edge of the cell

for for the absence of an adjoining cell. If such an edge is found, it is added to a list of unordered

edges, and once complete, this list is used to form ordered loops of connected edges in a similar way

to which the boundary strings were formed.

Once a closed loop of edges forming a polygon pocket is identified, each of the internal angles

of the polygon are computed, and 90◦ is subtracted from the result of each (the reason for this

will become apparent). The modulus of the resulting angle (the internal angle less 90◦) is then

computed, and the edge associated with a average result from both its endpoints that is closest to

zero is identified (i.e. the edge whose endpoints contain internal angles closest to 90◦). Zipping

starts from this edge, and it is this edge that is analogous to the edge formed by the closest two

points in the regular zipping algorithm such as the two connected points of Figure 5.20.

158

Zipping of the pocket then proceeds with the two points just identified forming two of the three

vertices of the triangle cell, with the third vertex being one of the two points adjacent to the two

points already identified. The quadrilateral formed by these four points is assessed with regards to

being convex, inverted or otherwise, and the selection of which point to use in the formation of the

triangle is based on the criteria outlined above for the regular zipping algorithm. Once the pockets

have all been closed, the zipping procedure is complete and the resulting hybrid surface grid is shown

in Figure 5.25(b).

(a) After zipping, but before triangulating the gaps
where three subsets meet.

(b) The final result of the zipping algorithm

Figure 5.25: Final zipped grids, before and after triangulating the final gaps.

Once the zipped subsets have been generated, integration proceeds by interpolating the under-

lying primitive variables from the overset grids to the centre of each of the triangular cells. The

solution at the quadrilateral cells is already available since they form part of the underlying grids

anyway, so no interpolation to these cells is required. Integration then commences over the non-

overlapping zipped grid in the usual way, by summing the contribution from each non-overlapping

cell.

5.7 Domain Connectivity

This section describes the domain connectivity procedure that is used in order to provide continuous

solutions from one sub-grid to the next, which are equivalent to the block-structured solutions (when

grid independence is achieved in both cases).

159

Interpolation of all primitive variables is conducted at the interpolation cells at the start of each

outer iteration. The method of interpolation used to achieve this can be the linear interpolation

method, as described in Section 5.4.1, the mass-flux based method, as described in Section 5.4.2, or

some other method (such as those discussed in Chapter 2). The use of higher order interpolation

methods makes little sense unless higher order discritisation techniques are also employed. The

second order methods discussed in section 5.4 have therefore been used in the present study, coupled

with sufficient grid resolution to achieve grid independence.

In instances where interpolation boundaries arise at the edge of a sub-grid (e.g. where i = 1 or

i = Ni) halo cells are required in order to store the interpolated variables. The geometry of the halo

cells should mirror that of the adjacent standard cells, with the plane of reflection lying on the face

that splits the halo and standard cell.

In order to improve continuity between sub-grids, it has been found that it is necessary to treat

any interpolation boundaries in a manner that is consistent with the internal boundaries between

standard cells. This entails applying a Rhie-Chow type interpolation for the mass flux calculation at

the interpolation boundaries (where one is used to calculate the mass flux between standard cells).

Also, for the pressure correction equation, the coefficient in the direction of any interpolation cells

(where the coefficients are given in Section 3.5) should be evaluated in the usual way (i.e. in the

same way as for adjacent standard cells), and not simply set to zero as is often the usual practice

for other types of boundary condition.

Since the coefficients of the pressure correction equation depend upon the diagonal coefficient

of the momentum equations, it is necessary to evaluate the diagonal coefficients of the momentum

equations at each interpolation cell. The diagonal coefficient, AP , is evaluated at each interpolation

cell’s centre, and is averaged onto the face that is required for use in the pressure correction equation,

and for Rhie-Chow interpolation. In order to evaluate the diagonal AP coefficient at interpolation

cells, the fluxes through each face of the interpolation cell are required. Two options are available,

which are to interpolate the flux density at the face centres of the interpolation cell directly, and

then multiply this flux density by the face area in order to obtain the required flux. Alternatively,

one can interpolate the primitive variables onto a second row of halo cells, and compute the fluxes

via linear interpolation between the two adjacent halo cells. Both options have been implemented

in the present code, with little difference found between the two options. The latter option was

therefore used, as the second row of halo cells also proved to be useful in treating the convective

160

fluxes in a consistent manner where higher order discritisation techniques are used (e.g. the QUICK

scheme), since a QUICK interpolation can then be conducted on the interpolation boundaries.

The overall solution procedure is similar to that of the standard SIMPLE algorithm commonly

employed on single-block structured grids, with some subtle differences, as outlined below:

1. Set all boundary conditions, including all interpolation boundary values, for each sub-grid.

2. Compute the momentum equation coefficients (AE , AW , AP , etc.) for each equation at each

standard cell. Also compute diagonal coefficient (AP) on all interpolation cells.

3. Solve, on each sub-grid in turn, the discritised momentum equations for the intermediate

velocity field (which is generally non-mass conserving. Typically only one iteration of the

momentum equations is performed for each outer iteration, however this is not necessarily

the case. If more than one iteration of the momentum equations is to be performed, the

interpolation boundary conditions should be updated at the end of each inner iteration for the

variable that is being changed.

4. Compute the uncorrected mass fluxes through each face, applying Rhie-Chow interpolation to

determine the face velocity. Rhie-Chow interpolation is applied at all internal faces, and also

at faces that form interpolation boundaries (but not at faces that form other boundaries, such

as inlets, due to the lack of sufficient information in the boundary direction). Rhie-Chow is

employed on the interpolation boundary in order to provide a consistent boundary treatment.

5. Solve the pressure correction by performing an inner iteration of the discritised pressure cor-

rection equation (Equation 3.38) on each sub-grid in turn. This is then repeated several times

(e.g. 5-10 times), or until the residual of the pressure correction equation has fallen to a pre-

defined fraction of the initial residual. At the end of each inner iteration, the value of p′ at

all interpolation cells are obtained through interpolation. This is valid since the pressure will

have been obtained through interpolation, hence the mass conserving pressure correction must

be the same at interpolation boundary point as it is at the same point on the underlying donor

grid in order to maintain the same pressure at the same point on both grids. Failure to set the

interpolation boundary conditions of the pressure correction equation in this consistent manner

can result in spurious ‘ kinks’ in the pressure field close to the interpolation boundaries.

161

6. The boundary pressure corrections are updated, via interpolation for interpolation cells, or by

applying a zero gradient condition for all other boundary types.

7. The face mass fluxes, cell centre velocities, and pressure are updated via Equations 3.39.

162

Chapter 6

Selected test cases

The Figures referred to within this chapter can be found from Page 177.

6.1 Introduction

The methods discussed in Chapters 3,4 and 5 have been incorporated into a new overset CFD code

that has been developed in this project. This code uses the finite volume method within a general

coordinate system (as outlined in Chapter 3). The governing equations that the code solves are

the steady state, discretised, Navier-Stokes equations in three spatial dimensions. Two-dimensional

simulations are implemented via setting symmetry conditions on all xy-planar faces.

Numerical experiments involving overset grids have been conducted as part of this project, the

results of which are presented within this chapter. The main objective of these numerical experiments

has been to test the overset method and the finite volume implementation in the present code, rather

than to analyse specific flow physics. For this reason, fully grid independent solutions were not

always sought. The geometries considered in this chapter are typically rather simple. This enables

a single-block or block-structured simulation to be carried out with ease for comparative purposes.

In Section 6.2, the flow in a cavity that is driven by a lid is investigated. Section 6.3 considers

the crossflow over two rotating cylinders. Finally, Section 6.5 considers a jet flow impinging onto a

concave surface.

163

6.2 Lid Driven Cavity flow

Lid driven cavity flow involves flow in a closed cavity that is induced by a moving lid. Figure 6.1

shows a schematic of the flow. The no-slip condition causes the fluid in contact with the moving

lid to move at the same velocity as that of the lid. This is turn causes the fluid throughout the

rest of the cavity to move via viscous interaction with the adjacent fluid. As this fluid impinges

onto the side wall (the right wall in this instance since the lid is moving from left to right), a high

pressure region is generated in the top right corner. This high pressure causes the fluid to move

downwards towards the bottom right corner along the favorable pressure gradient. This favorable

pressure gradient however is short-lived and soon turns adverse as the influence of the lower wall

is felt. Typically, boundary layer separation from the right side wall will occur as a result of this

adverse pressure gradient for all but exceptionally low Reynolds numbers (e.g. Stokes flow within

a lid a driven cavity [58]). This separated fluid is then directed towards the lower wall due to its

inertia (despite the adverse pressure gradient), where it reattaches onto the lower wall. As the flow

follows the lower wall, it experiences a favorable followed by adverse pressure gradient for much the

same reasons as were described for the side wall. Separation again typically occurs from the lower

wall, near the bottom left corner, for this reason. The flow along the left wall experiences a strong

favorable pressure gradient along its entire length owing to the low pressure region that is present

in the top left corner of the cavity (the low pressure is required in order to satisfy mass conservation

since the lid drives fluid away from this corner which must be replaced). The fluid is seen to move

around the perimeter of the cavity forming the primary vortex. Viscous shear interaction between

this primary vortex and the fluid in the two separation regions (i.e. in the bottom two corners)

causes the formation of two secondary vortices in these regions. At the center of the primary vortex

(and to a lesser extent the secondary vortices) there is a low pressure region which is present in

order to balance the centrifugal force associated with the streamline curvature.

Lid driven square-cavity simulations have been conducted with various mesh topologies. The

Reynolds number is equal to 100 in all instances (based on the lid velocity and the length of one of

the square cavity’s sides, L). The QUICK convection scheme is used in all cases.

164

6.2.1 Single block results

A single block solution forms the benchmark from which other mesh topologies shall be compared.

Figure 6.2 shows the 900 cell mesh used in this simulation. It can be seen that a slight refinement

towards the walls has been made; all near wall cell centres are placed at 0.004L from the wall, while

a growth ratio of 1.2 is applied in the wall normal direction over 7 cells before a uniform spacing is

applied.

Figures 6.3 and 6.4 show contours of the x and y components of the velocity respectively, nor-

malised by the lid velocity. Also shown in the figures are the results that have been obtained by

running the same simulation with the same settings and grid with the commercial software FLU-

ENT. Both sets of results have been iterated until the residuals of all variables reached machine

accuracy. It can be seen that a near exact match is obtained, thereby offering some validity towards

the presently obtained single block result.

Figure 6.5 reports the pressure fields obtained from these single block simulations. Here it can

be seen that the agreement between FLUENT and the present code is slightly less satisfactory. It

is expected that the discrepancy is due to the boundary condition for the pressure that is applied

at the cavity walls. In the present code, a zero gradient boundary condition is applied (∂p/∂n = 0).

Justification for this condition can be made by considering the momentum equation in the wall-

normal direction, which after cancellation of the terms that are zero at the wall due to the no slip

condition gives:

∂p

∂n

∣∣∣∣
wall

=
∂

∂n

(
µ
∂un
∂n

)∣∣∣∣
wall

(6.1)

Here the continuity condition for an incompressible flow has been employed in order to cancel

out additional terms arising from the antisymmetric part of the viscous stress tensor. The term n

in the equation is the coordinate in the wall-normal direction.

The bracketed term on the right hand side of Equation 6.1 (i.e. ∂un/∂n), must be zero at the wall

so as to ensure no flow through the boundary. The full term on the right however will not in general

be equal to zero, but is usually negligibly small at the wall. A zero gradient condition is therefore

a reasonable approximation and is simple to implement. Even at regions of flow impingement, the

RHS of 6.1 will tend to be small since the high stagnation pressure at the impingement point will

165

act to decelerate the wall-normal velocity component to an essentially zero value before the wall is

encountered (and hence the wall normal velocity will be near zero over some short distance before

the wall, thereby ensuring the second derivative is small).

The discrepancy in the pressure field that was seen in Figure 6.5 is expected to arise from

FLUENT using the full form of Equation 6.1, with the right hand side retained (although this

cannot be confirmed since FLUENT is a commercial code and the precise implementation does not

appear in the documentation). While the right hand side of Equation 6.1 is expected to be small,

the discrete approximation to Equation 6.1 typically will not be small if the grid spacing is large.

Given the rather coarse grids used, this is likely to be the issue. Grid refinement studies have shown

that the pressure field improves drastically with additional cells, giving essentially the same solution

by both codes. Figure 6.6 shows the results of this test, where 2704 cells have been used in the

refined grid. The discrepancy in pressure between the two codes at each cell of the computational

domain has been computed for this refined grid. It was found that the discrepancy was, even in the

worst case, still less than 0.1% of the dynamic pressure, (0.5ρu2
lid).

6.2.2 Overset grids with one-way information transfer

The next test that was undertaken involved the use of an overset sub-grid placed towards the

upper region of the cavity (where the velocity and pressure gradients are steep, thereby providing a

challenging situation for the interpolation algorithm). The overset sub-mesh comprises of a uniform

7 × 7 cell square that is rotated by 30◦ from the horizontal. The background grid that is used to

mesh the cavity is the same as the initial 30 × 30 grid used in the previous section. The overset

mesh interpolates from this background grid, however the opposite is not true. The solution of

the background grid is therefore independent of the overset sub-mesh and will be identical to the

single-block solution considered earlier. Figure 6.7 shows the meshes used in this test.

Figures 6.8 and 6.9 show contours of the horizontal and vertical velocity component respectively

for the one-way information transfer test. It can be seen that the velocity is convected reasonably

well across the interpolation interface. The small discrepancy in the velocity field in the overlap

region is likely to be due to differences in the truncation error between the two grids. While the

spacing is broadly the same, the orientation of the cells relative to the flow vector is different. It was

shown in Chapter 3 that the leading truncation error term for the QUICK scheme is proportional

to the third derivative of the variable under consideration, with respect to the coordinate direction

166

normal to the cell face (Equation 3.16). If the flow is aligned with the faces, this term will generally

be small, and dependent on the local flow acceleration or deceleration only. If on the other hand

the flow is not aligned with the cells, the third derivative will involve the u or v velocity gradient

in a direction other than that of the velocity vector. This will introduce a different truncation error

relative to the former case (the error is generally larger since the cross-stream velocity gradients are

generally larger than the streamwise velocity gradients).

Figure 6.10 shows the pressure field that is obtained from the present one-way information

transfer simulation. Here it can be seen that discontinuous solutions have been obtained on the

overset sub-grid. The reason for this is due to the differences in truncation error on the two grids.

The problem is that the pressure at the interpolating boundary of the overset mesh is being forced to

a value that is interpolated from the interior of the background mesh. It has already been noted that

the interior of the background mesh will develop a unique solution to that of the overset mesh, due to

the differences in the truncation error between the two grids. The fact that the interior of the mesh is

being forced to a value that it’s surrounding nodes do not agree upon causes a discontinuity since the

discrete problem is over-specified at the boundary. In an incompressible Navier-Stokes simulation,

one typically sets boundary conditions for the velocity while the boundary pressure emerges as part

of the solution, or vice-versa. In this situation the problem is well-posed [59]. However, in the overset

method, it is necessary to prescribe boundary conditions for the velocity components and pressure.

As such, the discrete problem is likely to be ill-posed, unless the interpolated velocity and pressure

are consistent with one another (and with the solution on the interior of the interpolating grid).

This will be the case if truncation error is negligibly small since unique solutions in the overlap will

not materialise in this case. Hence, the discontinuous pressure reported here is of little concern as

one would expect convergence to a continuous solution at grid independence (this will be seen in

later Sections where grid independence has been sought).

6.2.3 Overset grids with two-way information transfer

In this test, the same overset grids that were used in the previous section are again employed. This

time, the hole-cutting algorithm is invoked in order to remove unnecessary cells in the overlap region.

Cells are removed from the background grid only. Figure 6.11 shows the grids in this case.

Figures 6.12 and 6.13 show contours of the horizontal and vertical velocity component respectively

for the two-way information transfer test. It can be seen that the agreement between grids is again

167

very good for the velocity field.

Figure 6.14 shows the pressure field. In this case the pressure is much more satisfactory than

was seen for the one-way information transfer case (Figure 6.10). Even with these coarse grids, near

continuous solutions are obtained over the interface.

Since the cells on the background mesh now interpolate from the overset grid, and vice-versa, any

differences in the solution that would ordinarily be obtained in the overlap region, due to differences

in the truncation error, are smoothed out. The solution on the background grid is fixed to the

interpolated values at interpolation cells within its interior. The solution on the background grid’s

cells that are close to the hole are therefore strongly affected by the solution on the overset grid,

and end up converging towards a solution that the overset grid has contributed towards. Since the

overlap is reasonably small, these cells end up forming part of the donor interpolation stencils that

are used in interpolation onto the overset grid. Both grids therefore converge towards a solution

that they have both contributed towards, and hence the solution is smooth. If the overlap were

excessively large, unique solutions would again develop in the overlap region due to differences in

truncation error over the two grids. Continuous solutions may not be obtained in this case. It is

advantageous therefore to minimise the overlap (which is handled automatically by the hole cutter

developed in this code).

The solution obtained on the present overset grids is now compared to the single block solution

obtained earlier. Figures 6.15 and 6.16 show profiles of the x-velocity and the pressure respectively,

taken through the cavity. It can be seen from the former figure that there is no appreciable difference

in the x-velocity component between the overset and the single block solutions. The latter figure

shows some minor differences in the pressure field. The reason this difference exists is that the grids

are rather coarse and hence truncation error is appreciable. The differences that the cell rotation

makes to the truncation error have been highlighted. At grid independence, the overset solution will

converge to that of a grid independent single block solution.

6.2.4 Multiple overset grids.

The test case considered here serves as a useful demonstration of the hole cutting algorithm. From

Figure 6.17 it can be seen that the case consists of the addition of a circular O-shaped overset sub-

mesh which overlaps both the original square mesh and the background mesh. It can be noted from

the figure that part of the circular mesh extends outside of the domain boundary. This however is

168

of little concern since the hole cutting algorithm cuts all cells that intersect walls (they by definition

must lie on the boundary, so cannot be used). The cells that are adjacent to these cut cells must

be converted to interpolation cells in order to provide complete computational stencils to adjacent

standard cells. However, if no donor grid can be identified then these cells must also be cut (with the

cells adjacent to the newly cut cells being set to interpolation instead). This process of attempting

to find interpolation stencils continues until no further changes are made by repeating the process,

by which point all cells outside of the domain will have been cut. This algorithm is both rigorous

and quick (thanks to the use of alternating digital tree data structures, as discussed in Section 5.5.2).

See Section 5.2 for further details on the hole cutting algorithm.

Figures 6.18, 6.19 and 6.20 show the x and y component of velocity, and the pressure field

respectively for this test case. It can be seen from these figures that reasonable solution continuity is

obtained between grids, despite the considerable heterogeneity in the cell size (particularly towards

the centre of the blue mesh), and the relative coarseness of the meshes.

6.2.5 Cavity with a circular cylinder inserted.

This section briefly demonstrates the use of the overset method in a situation where its use is

advantageous over a block-structured arrangement. In all the prior tests, the overset method has

offered no advantage over a single block mesh (it actually complicates the gridding slightly). Here the

situation is one where a circular cylinder is placed within the cavity which provides an obstruction

to the flow.

The same meshes as were used in the previous section are again used. In this case, the boundary

condition of the interior circle of the O-grid is set to a wall before calling the hole-cutting algorithm.

The additional cells of the background grid that originally were preserved in order to mesh the

portion of the domain at the centre of the cylinder, are now cut since they intersect the cylinder’s

wall.

Figures 6.21, 6.22 and 6.23 show the x and y component of velocity, and the pressure field respec-

tively for this case. It can again be seen that continuous solutions are obtained. The considerable

distortion of the flow, due to the presence of the cylinder, is also apparent from the plots. It can

be noticed that the boundary layer around the cylinder is poorly resolved due to the coarse mesh

with little near-wall refinement. However this does not detract from the attractiveness of the overset

method. The objective here is to demonstrate the method rather than obtain accurate results.

169

6.2.6 Summary

The flow in a cavity which is driven by a moving lid has been investigated. Single block solutions have

been compared against solutions obtained from the commercial software FLUENT, with favorable

outcome. With a sufficiently fine mesh, the solutions are essentially the same between the two codes.

This important result offers some validation of the underlying flow solver developed in the present

study.

Overset simulations with one and two-way information transfer have been conducted over fairly

coarse meshes. It was found that the former case did not give a satisfactory pressure field since

the solution at the boundary of the overset mesh is forced to a pressure that is not consistent with

the interior cells of that mesh (the boundary conditions are over-prescribed). Solution differences

due to the different truncation errors on the two meshes lies at the root of the problem. At grid

independence, the issue will vanish since truncation and interpolation error will be negligibly small.

For the two-way information transfer case, the pressure field is continuous across the overset

grid. In this case the pressure at the boundary of the overset grid is (reasonably) consistent with the

interior cells of that mesh since these very same interior cells that have contributed to the solution on

the background donor mesh (and vice versa). These findings highlight the importance of minimising

the overlap.

Comparisons with the overset simulations have been made against the single block simulation.

It was found that the velocity field is broadly the same for the two sets of results. The pressure

shows small differences between the two results due to the differences in truncation error that the

overset grid rotation introduces.

Other tests involving three overset sub-grids have been conducted to demonstrate the capabilities

of the hole cutting algorithm in dealing with moderately complex geometries. It is shown that

overset sub-grids need not lie completely within the computational domain. Provided the boundary

conditions are appropriately tagged on all sub-grids, the hole cutting algorithm can automatically

deal with such cases. Boundary condition tags need be applied regardless of the method of meshing,

and hence this is of no additional cost to the user. The hole cutter is also shown to perform well in

selecting which cells to cut in an overlap region. In all cases, the smallest cell sizes are preserved.

Finally, the flow in a lid driven cavity with a circular cylinder obstacle demonstrates one practical

application of the overset method. A block-structured grid would be moderately challenging to

170

generate in this case since some domain decomposition would be required (a 6 block decomposition

seems logical to this author, although other options are available). The overset method however

requires very little in pre-processing effort for this case.

171

6.3 The flow around two rotating cylinders

The cross-flow over two rotating cylinders is considered in this section. Figure 6.24 shows a sketch

of the geometry. In the present study, the flow Reynolds number, based on cylinder diameter and

freestream velocity magnitude, is equal to 50. This is low enough to ensure that unsteady flow

separation should not occur, which may prevent convergence of the steady solver developed here. A

dimensionless measure of the rotation rate is given by the ratio R · ω/u∞ (where ω is the angular

velocity of the rotating cylinders and R is the cylinder radius). This quantity was set to 2 in the

present study.

6.3.1 Boundary conditions and numerical model

At the inlet, a uniform velocity has been applied with a magnitude that corresponds to the flow

Reynolds number (i.e. Re = 50). At the cylinder walls, the no-slip condition is applied; the velocity

component normal to the wall is set to zero, while the tangential component is set to twice the inlet

velocity (since Rω/u∞ = 2).

Symmetry boundary conditions have been employed on the upper and lower domain boundaries.

This condition is implemented by setting zero gradient conditions for all variables before setting the

boundary-normal velocity component to zero.

At the outlet, zero gradient conditions for all flow variables but the pressure is used. The

boundary pressure is determined from the bulk correction algorithm described in Section 3.6.1.

All simulations have been conducted with the QUICK convection scheme. Both standard bi-

linear interpolation (SI) and the MFBI algorithm have been used for inter-grid interpolation in

separate simulations.

6.3.2 Computational Grid

The grids used to simulate this problem are shown in Figure 6.25. The overset simulation is con-

ducted over two identical O-shaped grids in addition to a background Cartesian grid. All compu-

tational cells are orthogonal. It is apparent that holes have been cut into the component grids to

obtain the overall computational domain. The case in which three grids all overlap one another is

again dealt with satisfactorily by the hole cutting algorithm. A total of around 14, 000 active cells

make up the computational domain (where active cells exclude those that are cut by the hole cutting

172

algorithm).

6.3.3 Results

Figure 6.26 shows the flow streamlines. It can be seen that the flow does not separate from the

cylinder, as would have been expected for a non-rotating case. Instead, the no slip condition causes

near-wall fluid to move with the wall, which in turn causes distortion of the cross-flow streamlines

via viscous interaction. The tangential velocity at the cylinder wall acts to augment the streamwise

velocity component over the lower half of both cylinders, while the opposite is true for the upper

half of the cylinders. This velocity differential causes a pressure differential to develop across the

cylinder, which generates a force perpendicular to the streamwise direction (this is known as the

Magnus effect).

Contours of velocity components in the x and y directions, and contours of pressure are presented

in Figures 6.27, 6.28, and 6.29 respectively. From these figures it can be seen that continuous

solutions are obtained from one grid to the next for all three primitive variables.

Simulations have been carried out with standard (bi-linear) interpolation, and also with the

semi-conservative MFBI method. No appreciable difference in the converged solution was noticed

between the two interpolation methods, suggesting that the truncation error in the overlap region

is sufficiently low for standard interpolation to perform satisfactorily. It was however noticed that

convergence is enhanced and that the solution residuals fall to a lower level through the use of the

MFBI method. Figure 6.30 shows a plot of the residuals of the pressure correction equation for the

present study and the two interpolation methods used. Even if no appreciable difference in the final

converged solution is noticed, the enhanced convergence rate makes the method attractive.

To test the validity of the code, this problem has also been simulated in FLUENT using a block-

structured grid, initially with the same number of cells at that of the overset mesh (i.e. 14,000 cells).

The block-structured grid that was used is illustrated in Figure 6.31. Both the block-structured grid

and the overset grid solutions were tested for grid independence by refining the grids by a factor

of two. No discernible difference in the flow field result for the overset simulation was found by

taking this step, and hence the initial grids were used. However, for the block-structured grid it was

found that a further refinement was required in order to confirm grid independence. Approximately

28, 000 nodes were required to yield satisfactory results on the block-structured grid while 14, 000

nodes was sufficient for the overset simulation. This would suggest that, for this particular case,

173

the overset method offers increased efficiency relative to the block-structured method. The reason

for this is likely to be due to the fact that the overset method employed orthogonal grids for this

problem, whereas for the block-structured grid there were abrupt changes in cell alignments at block

interfaces which introduces error.

It can be seen from Figure 6.31 that the block-structured grid is fairly complex in comparison

to the overset grid, even for this relatively simple geometry, thereby highlighting the overset grid

method’s ability to simplify the pre-processing stage. A total of 13 blocks are used in order to

decompose the domain.

Profiles of U , V and P have been taken through the wake, at 3R from the cylinder’s rotation

axis. Plots of these profiles, along with comparisons with the FLUENT simulation, are presented in

Figures 6.32, 6.33 and 6.34. From these plots it is apparent that the present code results are broadly

in agreement with those of FLUENT, with only minor differences present. The small differences

are likely to be attributable to differences between the two grids; the solution was deemed grid

independent when the effect of further refinement was small, not when it is zero. The plotting of

profiles (rather than contours say) exaggerates any small discrepancy that may be present.

6.4 Summary

The flow over two rotating cylinders has been simulated with overset grids. Continuous solutions are

obtained from one grid to the next, thereby giving some support to the validity of the interpolation

algorithm and overset method in general.

Results have been compared against a block-structured simulation. It is found that only very

minor differences between the two solutions is found, which is presumably due to slight grid depen-

dencies that have not been identified in the grid sensitivity test. In any case, the differences are

minor.

174

6.5 Flow impinging onto a concave surface

This test case consists of a fluid entering into a semi-circular chamber, through an inlet slot positioned

at the centre of the semi-circle’s straight edge. The fluid impinges onto the chamber’s concave wall,

and then follows the contour of the wall, before exiting through one of the two outlet slots. Both

outlets are also positioned on the semi-circle’s straight edge, one at the leftmost side of this edge,

and the other at the rightmost side. Figure 6.35 illustrates this setup.

6.5.1 Geometry and computational grid

The outlets are both 0.5 inlet widths wide, and the radius of the concave wall is equal to 3.125 inlet

widths. The Reynolds number, based on bulk inlet velocity and inlet width, was equal to 5, 000.

The Reynolds averaged Navier-Stokes equations were closed using the low-Reynolds number k − ε

model of Launder and Sharma [2].

The governing equations were solved over two overset grids, as illustrated in Figure 6.36. The

(red) inlet grid had a resolution of 60 × 180 nodes while the (green) curvilinear grid used 65 × 350

nodes in the radial and azimuth directions respectively. All near-wall nodes were placed at a distance

of approximately 3.5 × 10−5 inlet widths from the wall. This resulted in a y+ value of less than

unity for all near wall nodes.

6.5.2 Boundary conditions and numerical model

On the inlet boundary, uniform profiles for velocity and turbulence quantities were specified. The

turbulence intensity was set to 5 % with a turbulent to laminar viscosity ratio of 8. The velocity

was set to a value consistent with the flow Reynolds number of 5, 000.

The outlet boundaries had a prescribed uniform pressure applied across the boundary, while the

velocity variables were extrapolated from the interior of the domain.

Simulations have been conducted with the QUICK convection scheme for the velocity compo-

nents, and the UMIST scheme for the turbulence variables.

6.5.3 Results

Contours of the flowfield variables, U and V, along with the predicted pressure field, are given in

Figures 6.37, 6.38 and 6.39 respectively. From these figures it can be seen that continuous solutions

175

are obtained from one grid to the next.

Contours of the turbulent kinetic energy, k, (normalised by the inlet value of k), and of the

turbulent to molecular viscosity ratio, µt/µ, are presented in Figures 6.40 and 6.41 respectively.

Again, it can be seen that continuous solutions are obtained, thereby demonstrating the ability of

the method to deal with turbulent flows.

176

6.6 Figures

177

Figure 6.1: A schematic of the lid-driven cavity problem with the physical boundary
conditions.

178

X

Y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 6.2: The 30× 30 mesh used for single block simulations.

179

-0
.2
0

-0
.2
0

-
0
.
1
0

-0
.1
0

-0.10

-0
.1
0

-0.
10

0.00

0.00

0.00

0.10

0.10

0.20

0.2
0

0.
30

0.30

0.4
0

0.40
0.5

00.50 0.60

0.60
0.70

0.800.80 0.900.90

X

Y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1
U/(Ulid)

Figure 6.3: Predicted x-velocity contours for single block lid driven cavity computation,
normalised by lid velocity. Re = 100. Present code (red line) is compared with the

commercial CFD package Fluent (black line).

180

-
0
.
5
0

-
0
.
4
5

-
0.
4
0

-0
.4
0

-0
.3
5

-0
.3
5

-
0
.
3
0

-0.30

-0
.3
0-0
.2
5

-
0
.
2
5

-0
.2
5

-0
.2
0

-0
.2
0

-
0
.
2
0-0.

1

-0
.1
5

-0.
15

-
0
.
1
5

-0
.1
0

-0.10

-
0
.
1
0

-0.05

-0
.0
5

-0.05

-0
.0
5

-
0
.
0
50
.
0
0

0.
00

0
.
0

0.
00

0.05

0.
05

0.
05

0.05
0
.
0
5

0.10

0.10

0.
10

0
.
1
0

0.15

0
.
1
5

0.15

0.15

0.20

0.20

X

Y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1
V/(Ulid)

Figure 6.4: Predicted y-velocity contours for single block lid driven cavity computation,
normalised by lid velocity. Re = 100. Present code (red line) is compared with the

commercial CFD package Fluent (black line).

181

0.41-0
.3
5

.29

0.17

-0
.0
9

-
0
.
0
9

-0.07

-0.0
7

-
0
.
0
5

-0.05-0.05 -
0
.
0
3

-0.03

-0.03

-0.01

-0.01

-0.01

0.01
0.01

0.01

0.01

0.03

0.
03

0.03

0.05

0.05

0.05

0.05

0.07

0.
07

0.07

0.07

0
.
0
9

0.0
9

0.
09

0
.
1
1

0.13
0.15

0.17

0.19

0
.
2
30.

270.29
0.31

0.
3

0.37

0.
39

0.43

0.45
0.54

0.58

0.
72

0.82

0.90

0.
9

0.
9

X

Y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1
P/(0.5ρU2)

Figure 6.5: Predicted pressure contours for single block lid driven cavity computation,
normalised by 0.5ρU2

lid. Re = 100. Present code (red line) is compared with the commercial
CFD package Fluent (black line).

182

.00

-0
.7
6

-0
.7
6

-0
.6
80.

6
8

-0
.4
3

-0
.3
5

-0.31

-
0
.
2
7

.23.19
-0.15

-0.15

-0
.1
5 -0.15

-0.15

-
0
.
1
1

-0.11

-0
.1
1

-0
.1
1

-0.11

-0.1
1

-0
.1
1

-0.11 -0.07

-0.07

-0.07 -0
.0
7

-0.07

-0.07
-0.03

-0.
03-0.03

-0.03

-0.0
3

-0.03

0.
0

0.
01

0.01
0.01

0.01

0.
01

0.05

0.05

0.09 0.1
3

0.21

0.25 0.29

0.29
0.37

0.
41

0.45

0.
54

.01

0
.
5
8

0.620.62

0
.
6
6

0.66
0.70

0.
7

0.82

!

"

! !"# !"$!"% !"& '
!

!"#

!"$

!"%

!"&

'

Figure 6.6: Predicted pressure contours for single block lid driven cavity computation when
using a 52× 52 cell mesh. Re = 100. Present code (red line) is compared with the commercial

CFD package Fluent (black line).

183

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 6.7: Mesh used for one-way information transfer test.

184

-0
.2
0

-0.
20

-0
.1
3

-0.13

-0.
13

-0.05

-
0
.
0
5

-0
.0
5

-0.05

-0.05

-0.05

-0.
05

0.02

0.02

0.
09

0.09

0.09

0.
17

0.17

.17

0.2
4

0.24
0.31

0.31

0.39

0.39

0.46

0.46

0.53

0.53

0.61
0.61

0.68

0.68 0.750.75 0.830.83 0.900.90

-0
.2
0

-0.
13

-0.05

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 6.8: Predicted x-velocity contours for one-way information transfer test. Re = 100.
Solution on background grid is shown in black, while the solution on the overset grid is

shown in red.

185

-0
.5
0

-0
.4
5 -
0.
40-0
.4
0

-
0
.
3
5

-0.35

-0
.3
0

-
0
.
3
0

-
0
.
2
5

-0
.2
5

-0
.2
5

-0
.2
0

-
0
.
2
0

-0.
20

-0
.1
5

-0.15

-0
.1
5

-0
.1
0

-0.10

-0
.1
0

-
0
.
1
0

-0
.0
5

-
0
.
0
5

-0
.0
5

-
0
.
0
5

0.
00

0
.
0
0

0.05

0.
05

0.
05

0.05
0
.
0
5

0.10

0.
10

0.10

0
.
1
0

0.15

0.
15

0.15

0.20

0.
20

0.20

0.
25

-0
.0
5

0.
05

0.
10

0.150.20

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 6.9: Predicted y-velocity contours for one-way information transfer test. Re = 100.
Solution on background grid is shown in black, while the solution on the overset grid is

shown in red.

186

0.80

0.66

-0
.6
4

0.60-0.
56

-0
.5
4

-0.52

-0
.4
7

-0
.3
7

-0.31

-0
.2
3

-
0
.
2
1

-
0
.
1
9

-0
.1
7

-0.17
-0.15-0

.1
5

-0
.1
3-0
.1
3

-0.13

-0.11

-0.11

-0
.1
1

-0
.1
1

-0
.0
9

-0.09

-0.09
-0.07

-0.07

-0.07

-
0
.
0
5

-0
.0
5

-0.05

-0.05 -0.03

-0
.0
3

-0.03

-0.01

-0
.0
1

-0.01

-0.01

0.01
0.01

0.
01

0.03

0
.
0
5

0.
0

0.09

0.11
0
.
1
5 0.19

0.23

0.31

0.33
0.35 0.39

0.45

0.490.52

0.58

0.92

-0.1
7

-0.15-0
.1
3

-0.
11

-0.09 -0
.0
7

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 6.10: Predicted pressure contours for one-way information transfer test. Re = 100.
Solution on background grid is shown in black, while the solution on the overset grid is

shown in red.

187

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 6.11: Mesh used for two-way information transfer test.

188

-0.2
0

-0
.1
3

-0.1
3

-0
.1
3

-0.05

-0
.0
5

-0
.05

-0.05

-0
.0
5

-0.05

0.02

0.02

0.09

0.09

0.1
70.17

0.24

0.24

0.31

0.31
0.39

0.39

0.46

0.46 0.53

0.53

0.61

0.61 0.68

0.68
0.75

0.75 0.830.83 0.90
0.90

-0.
20

-0.13

-0.05

0.02

0.31

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 6.12: Predicted x-velocity contours for two-way information transfer test. Re = 100.
Solution on background grid is shown in black, while the solution on the overset grid is

shown in red.

189

-0
.4
5

-0
.4
0

-0.
40

-0
.35

-0
.35

-0
.3
0

-0.30

-0.
30

-0
.2
5

-0
.2
5

-0
.2
0

-0.20

-0
.20

-0
.1
5

-0.
15

-0
.1
5

-0.15-0.10

-0
.1
0

-0
.1
0

-0
.1
0

-0.10

-0
.0
5

-0
.0
5

-0
.0
5

-0.05

0.
00

0.
00

0.00

0.05

0.05
0.05

0.
05

0.10

0.10

0.10

0.15

0.15

0.15

0.20

0.20

0.20

0.2
5

-0
.1
0

-0
.0
5

0.
05

0.10
0.
15

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 6.13: Predicted y-velocity contours for two-way information transfer test. Re = 100.
Solution on background grid is shown in black, while the solution on the overset grid is

shown in red.

190

-0.96-0.9
2

-0.90
-0.6

2

-0.39

-0
.3
5

-0.33

-0
.31

-0.27

-0.25

-0.21

-0.17 -0.15

-0.13

-0.13

-0.11

-0.
11

-0.11

-0
.0
9

-0.0
9

-0.09

-0
.0
7

-0.07

-0.07

-0.05

-0.05

-0.05
-0.03

-0.03
-0.03

-0.01

-0.
01

-0.01

-0
.0
1

0.01

0.01

0.
01

0.03

0.
05

0.07

0.09

0.11

0.13

0.17

0.19
0.21
0.23

0.35

0.37

0.
41

0.43
0.490.54

0.56

0.58

0.62
0.72

0.74

0.84

0.90

0.
98

-0.15

-0.13

-0.11

-0.07

-0.0
7

-0.05

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 6.14: Predicted pressure contours for two-way information transfer test. Re = 100.
Solution on background grid is shown in black, while the solution on the overset grid is

shown in red.

191

Figure 6.15: Profiles of x-velocity taken vertically through cavity at x/L = 0.25, 0.5 and 0.75.
Overset grids are compared with single block solution. Distance between adjacent locations

where profiles are taken corresponds to half the lid velocity.

192

Figure 6.16: Profiles of pressure taken vertically through cavity at x/L = 0.25, 0.5 and 0.75.
Overset grids are compared with single block solution. Distance between adjacent locations
where profiles are taken corresponds to half the dynamic pressure (based on lid velocity).

193

x

y

0 0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

Figure 6.17: Mesh used for multiple overset grids test. User generated sub-grids (above).
Overset mesh after automatic hole cutting (below).

194

-0.13

-0.05

-0
.0
5

-0.05

-0
.0
5

-0.05

0.
17

0.09

0.
24

0.17 0.3
90.4
6

0.46

0.680.68 0.75
0.83

0.900.90

-0
.2
0

-0.20

-
0
.
1
3-0.13

-0
.0
5

0.0
2
0.
09

0.1
7

0.
24

0.31

0.39
0.4

6
0.53

0.610.68

x

y

0 0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

Figure 6.18: Predicted x-velocity contours for multiple overset grids test. Re = 100. Solution
on background grid is shown in black, while the solution on overset grids is shown in red and

blue for the square and circle respectively.

195

-0
.4
5

-
0
.
4

-0
.3
5 -

0
.
3

-
0
.
2
5

-0
.2
5

-
0
.
2

-0
.2

-0.15

-0
.1
5

-
0
.
1

-0
.1

-0.1

-0.05

-
0
.
0
5

-0.05

0

0.05

0
.
0
5

0
.
0
5

0.0
5

0.1

0
.
1

0.1

0.15

0
.
1
5

0.
15

0.
2

0.2
0.25

0.05

-0
.5

-0.45

-0
.4
5

-0.4

-0
.4

-0
.3
5

-0
.3
5

-0
.3

-0
.3

-
0
.
2
5

-0
.2

-0
.2

-
0
.
1
5
-0
.1
5

-0.
1

-
0
.
1
-0
.0
5

0

0

0
.
0
5

0.1

0.150
.
2

x

y

0 0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

Figure 6.19: Predicted v-velocity contours for multiple overset grids test. Re = 100. Solution
on background grid is shown in black, while the solution on overset grids is shown in red and

blue.

196

Figure 6.20: Predicted pressure contours for multiple overset grids test. Re = 100. Solution
on background grid is shown in black, while the solution on overset grids is shown in red and

blue.

197

-0
.0
5

-0
.0
5

-0.05

-0
.0
5

-0.05

0.2
4

0.24
0.
390.39

0.530.53 0.68
0.68 0.830.83

-0.
20

-0
.2
0 -0

.0
5

-0.05

-0
.0

5

0.09

0.24
0.39

0.53
0.68

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 6.21: Predicted x-velocity contours for the cavity with obstruction case. Re = 100.
Solution on background grid is shown in black, while the solution on overset grids is shown

in red and blue for the square and circle respectively.

198

-0.
34

-0
.3
4

-0
.2

3

-0.
13

-0
.1

3

-0
.1
3

-0
.0

2

-0
.0
2

-0.02

0.09

0.09

0.09

0.20

0.20

-0
.0
2

-0.45

-0.34

-0
.3
4

-0
.2
3

-0
.2
3

-0
.2
3

-0
.1
3

-0.13

-0
.0
2

-0
.0
2

-0.020.09

0.
20

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 6.22: Predicted v-velocity contours for for the cavity with obstruction case. Re = 100.
Solution on background grid is shown in black, while the solution on overset grids is shown

in red and blue.

199

-0
.9
6

-0
.8
4

0.72 -0.27

-0.23

-0.23

-0.19

-0.19

-0.15
0.
0

0.
05 0.19

0.19

0.
250.29

0.33 0.
37

0.620.74
0.820.90

-0.2
3

-0.23

-0
.1
9

-0.19

-0.19

-0
.1
5

-0.11

-0.03

-0.
03 0.01

0.01

0.21
0.25

0.41 0.54
0.62
0.78

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 6.23: Predicted pressure contours for for the cavity with obstruction case. Re = 100.
Solution on background grid is shown in black, while the solution on overset grids is shown

in red and blue.

200

Figure 6.24: Schematic of the two-rotating cylinders case with boundary conditions applied.

201

x/R

y/
R

-15 -10 -5 0 5 10 15

-10

-5

0

5

10

Figure 6.25: Overset meshes used for the flow around two rotating cylinders.

202

Figure 6.26: Flow streamlines around two rotating cylinders. .

203

1

1

1

1

0

0.5
1

2

0.5

1

1

x/R

y/
R

-5 0 5 10 15

-10

-5

0

5

10

Figure 6.27: Contours x-velocity, normalised by inlet streamwise velocity

204

-1
.6

-1
.4-0
.8

-0.6-0.4

-0.2

0

0.
2

0.2
0.4

-1.2 -1

-0.8

-0.4-0.2

-0
.2

0

0.2

0.
2

0.4

x/R

y/
R

-5 0 5 10 15

-10

-5

0

5

10

Figure 6.28: Contours of y-velocity, normalised by inlet streamwise velocity

205

0.0E+

0.0E+00

-6
.0
E+
04

-4.0E+04

0.0E+00

0.
0E
+0
0

0.0E+00

2.0
E+
04

4.
0E
+0
4

-4.0E+04-2
.0
E+
04

-2.0E+04

2.0E+04

x/R

y/
R

-5 0 5 10 15

-10

-5

0

5

10

Figure 6.29: Contours of pressure.

206

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 200 400 600 800 1000 1200 1400

lo
g

of
 p

re
ss

ur
e

re
si

du
al

Iterations

MFBI
SI

Figure 6.30: Normalised residuals of the pressure correction equation.

207

x/R

y/
R

-10 0 10 20 30 40-20

-10

0

10

20

Figure 6.31: Block-structured grid used for comparative purposes.

208

Figure 6.32: Comparisons with FLUENT and the present code. x-velocity in the wake, 3R
from rotation axis.

209

Figure 6.33: Comparisons with FLUENT and the present code. y-velocity in the wake, 3R
from rotation axis.

210

Figure 6.34: Comparisons with FLUENT and the present code. Pressure in the wake, 3R
from rotation axis.

211

!"#$%&'%#$% &'%#$%

Figure 6.35: Schematic of the impingement flow from a slot onto a concave surface.

212

x

y

-3 -2 -1 0 1 2 3
0

1

2

3

Figure 6.36: Grids used in the calculation involving fluid impinging onto a concave surface.

-0
.1
8
7
5

0

0

-0.5625

-0
.3
75

-0
.37
5

-0.375

-0
.1
87
5

-0
.1
8
7
5

-0
.1
8
7
5

-0.1875

0

0

0
0

0

0.1875

0
.1
8
7
5

0
.1
8
7
5

0.375

0.375

0
.3
7
5

0.5625

x

y

-2 0 2

0

1

2

3

Figure 6.37: Contours of U-velocity, normalised by inlet velocity. Re = 5, 000.

213

00

0.
2

0.2

0.2

0.
4

0.8

-0.8

-0
.8

-0.8

-0
.6

-0
.6

-0.6

-0.6

-0
.4

-0
.4

-0.4

-0.4

-0
.2

-0.2
-0
.2

-0.2

-0.2

0

0
0

0

0 0

0.2

0.4

0.6

0.
6

0.8

x

y

-2 0 2
0

1

2

3

Figure 6.38: Contours of V-velocity, normalised by inlet velocity. Re = 5, 000.

-1
.4E
-0
2

-1.3E-02
-1.3E-02-1.4E-02

-1.4E-02

-1.4E-02 -1.4E-02-1
.3
E-
02

-1.3E-02

-1.
3E
-02

-1.
3E
-02

-1.3
E-0
2

-1.3E-02

-1.2
E-0
2

-1.
2E
-02

-1.2E-02

-1.2E-02

-1.1E-02

-1.1E-02
-1.1E

-02

-1
.1
E-
02

-1.0E-02

-1.0E
-02

-1.0
E-0
2

-1.0E-02

-1.0E-02

-9
.7
E-
03

-9.7E-03

-9.7E-03

-9.7E-03

-9
.7
E-
03

-9
.7
E-
03

-9
.0
E-
03

-9.0E-03
-9.0E

-03

-8
.3
E-
03

-8.3E-0
3

-7.5E-03 -6.7
E-0

3-
6.0
E-0

3

-5.2
E-0

3-4.5E-03
-3.7

E-0
3

-3.0E-03
-1.5E-

03
-7.
5E
-04

x

y

-2 0 2
0

1

2

3

Figure 6.39: Contours of pressure. Re = 5, 000.

214

0.
26
66
67

0.
76
66
67

0.
93
33
330.933333 0.

93
33
33

1.
11.1

1.2
66
67

1.26667

1.43333

0.1

0.
1

0.1

0.1

0.1

0.1

0.
26
66
67

0.2
666

67

0.26
6667

0.
26
66
67

0.2
666

67

0.266667

0.266667

0.266667

0.
26
66
67 0.
26
66
67

0.266667

0.433333
0.4
333

33

0.433333

0.433333

0.6
0.6

0.
6

0.6

x

y

-2 0 2
0

1

2

3

Figure 6.40: Contours of k, normalised by inlet k. Re = 5, 000.

2

2

2

44

10

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

8

8

8

8

8

10 10

1212 12

14

14

16

1618
18

x

y

-2 0 2
0

1

2

3

Figure 6.41: Contours of µt/µ. Re = 5, 000.

215

Chapter 7

Backward Facing Step Flow

Calculation

The Figures referred to within this chapter can be found from Page 226 onwards.

7.1 Introduction

The flow over a backward facing step is a commonly used test case for code validation, owing largely

to the high complexity of the resulting flow field despite the relative simplicity of the geometry.

The case presents a challenging test for the flow solver and, in particular, the turbulence model

employed. Furthermore, there is a wealth of experimental data for backward facing step flows at a

wide range of different Reynolds numbers, and at various expansion ratios, which aids comparison

between computation and experiment.

Figure 7.1 illustrates the geometry and primary flow features that can be found in backward

facing step flows. The flow enters the domain with boundary layers forming on the upper and lower

walls. At the step, the flow separates from the lower wall and a shear layer is formed in place of the

lower boundary layer. Further downstream flow reattachment will occur, at which point the shear

layer bifurcates into a new boundary layer, and a recirculation region downstream and upstream of

the reattachment point, respectively. At some considerable distance downstream of the reattachment

point, a fully developed flow profile will be attained, at which point the flow will be indistinguishable

216

from simple channel flow.

In the region behind the step the flow is particularly complex, with primary and secondary

recirculation vortices present. The recirculating flow is driven by the shear forces in the shear layer,

and the subsequent fluid entrainment that results. At low Reynolds number the entrainment is

predominantly due to viscous shear, however at higher Reynolds numbers the turbulent diffusion of

momentum becomes increasingly significant.

An increase in turbulence levels throughout the shear layer will act to augment the fluid entrain-

ment into the shear layer, thereby enhancing momentum transfer, resulting in a faster recirculation

flow, with a consequential retardation of the core fluid flow outside of the recirculation region. A

shortening of the reattachment length (i.e. the distance from the base of the step to the reattachment

point) will therefore result. Accurate prediction of the turbulence levels through the shear layer is

therefore particularly important for the accurate prediction of the reattachment length.

As well as the effects of the primary recirculating flow, the secondary recirculation region can

have an indirect effect on the predicted reattachment length. This occurs via the momentum transfer

between primary and secondary vortices, and the subsequent momentum transfer between the core

flow and the primary vortex. Sufficient grid resolution to capture these secondary flow features is

therefore important.

7.2 Boundary Conditions and Geometry

The geometry considered here is equivalent to that considered experimentally by Chun and Sung,

[60]. The inlet was placed at five step-heights upstream of the step, and the inlet-channel width

was equal to two step-heights (yielding an expansion ratio of 1.5). Inlet boundary conditions for all

primitive variables were set to those of fully developed channel flow profiles, at a Reynolds number

of 33, 000 based on the step height and bulk inlet velocity, obtained via a separate channel flow

simulation. The outlet was placed sufficiently downstream of the step to ensure that zero-gradient

outlet conditions could be applied without significantly affecting the upstream profiles of any flow

variables. A distance of forty step-heights downstream of the step was found to be sufficient. The

bulk pressure correction algorithm, as described in Section 3.6.1, has been employed to ensure a zero

net mass flux through the domain boundaries. Interpolation boundary conditions were handled via

the semi-conservative interpolation method, described in Section 5.4.2.

217

7.3 Computational Model

The low-Reynolds number k−ε model of Launder and Sharma, [2], has been used to model the effects

of turbulence, with integration performed right up to the wall. The third order QUICK scheme has

been used to approximate the convective fluxes in the momentum equations, while the UMIST

scheme was employed for the approximation of the convective fluxes of the turbulence equations.

Pressure-velocity coupling has been achieved via the use of the SIMPLE algorithm.

It is well understood that for separated flows, such as that encountered behind a back-step,

the effective viscosity class of turbulence models typically perform rather poorly - and particularly

the linear form of such models such as that employed here. The root of the problem lies in the

fact that linear eddy viscosity models interact with the mean flow equations via the prescription

of a single scalar variable (i.e. the turbulent viscosity µt), which acts equally in all directions. In

reality, however, turbulence is anisotropic and hence cannot be accurately depicted through the use

of a single scalar for arbitrary flow conditions. In separated flows, where a prominent flow direction

cannot be identified, all components of the Reynolds stress tensor are significant and hence the use of

a single scalar to depict turbulence is particularly unsatisfactory. As a result, eddy-viscosity models

have a tendency to predict excessive levels of turbulence generation in the recirculation region, and

hence generally underestimate the reattachment length in a backward facing step flow configuration

due to the enhanced fluid entrainment into the shear layer.

In order to compensate for some of the inadequacies of the k − ε model in predicting separated

flows, a length scale correction term has been employed. The form of this correction is that pro-

posed by Iacovides and Raisee, [51]. In [51], a differential form of length scale correction which is

independent of the wall distance is presented. This is in contrast to a number of alternative length

scale correction proposals, such as the Yap correction, [50] (upon which this differential form is

based), which requires a normal distance to the nearest wall to be prescribed. Avoiding the need to

prescribe a wall distance is particularly attractive for complex three-dimensional geometries where

such a distance may not be defined. Admittedly, for the relatively simple geometry of a backward

facing step, the prescription of a normal wall distance is not particularly challenging; nonetheless,

the case provides a useful test of the correction term. The length scale correction is added to the ε

source and is active in non-equilibrium flows. The term acts to reduce the departure of the predicted

turbulent length scale from local equilibrium levels, and is essentially an ad hoc fix that often im-

218

proves predictions for such flows. In Section 4.4, the details of this differential length scale correction

term have been outlined.

7.4 Computational Grid

Separate grids have been used for the portions of the domain upstream and downstream of the step,

via the use of an overset arrangement. Figure 7.2 shows a typical grid arrangement used. For clarity,

the coarsest grids considered have been presented with every second grid-line omitted.

One advantage of using an overset grid arrangement over a block-structured grid is that fewer

nodes are typically required to achieve grid independence. For example, in order to resolve a wall

boundary layer, a large number of nodes are typically required within a short distance normal to the

wall. For the lower wall of the inlet channel, this near-wall spacing would typically continue into the

interior of the domain when using a block-structured arrangement, as illustrated in Figure 7.3. The

resulting high aspect ratio cells within the core of the domain are undesirable and can adversely affect

convergence rates. Furthermore, numerical stability may require the use of a reasonably fine grid

in other coordinate directions (in order to reduce the cell aspect ratio, thereby increasing numerical

stability), leading to an increased number of nodes and higher computational costs. Through the

use of the overset method however, this problem is reduced. One can simply “fan out” the near wall

cells over a distance of 1− 2 step heights say, as demonstrated in Figure 7.2. High aspect ratio cells

within the core of the domain are therefore avoided.

Grids comprising of approximately 16, 500, 33, 000 and 66, 000 nodes have been used. All grids

had a similar nodal distribution to that shown in Figure 7.2, with each grid refinement being obtained

by increasing the number of nodes along each edge of the domain by a factor of
√

2. For the 33, 000

node grid, 200× 165 nodes were used in the streamwise and transverse directions respectively. The

centroid of all near-wall nodes was placed at a distance from the wall of 1.14× 10−4H, 1× 10−4H,

or 7.07 × 10−5H for coarse, medium and fine grids respectively. The resulting near-wall y+ values

for all near-wall nodes was well below unity for all cases (a mean value of y+ ≈ 0.4 was found for

the medium grid resolution, for example).

The ratio of the wall-normal cell dimension between successive cells in the wall-normal direction

was set equal to 1.2. This was chosen in order to ensure that there were sufficient nodes normal to

the wall to fully resolve all boundary layers, while also avoiding excessive resolution. In order to

219

test that sufficient wall-normal grid resolution had been used, all cells where y+ ≤ 100 were plotted

(with any other cells being blanked), and in all cases it was ensured that there were at least 14, 20

or 28 unblanked nodes present in the wall-normal direction for the coarse, medium and fine grids

respectively.

To further test for sufficient near-wall grid resolution, Figure 7.4 shows a typical profile of the

dimensionless velocity U+, versus the dimensionless wall distance y+ (for the medium resolution

grid), with the locations of the cell centroids used to construct the profile indicated. It can be seen

from the figure that in this case, ten nodes cover the laminar sub-layer (defined as y+ < 5), while a

further nine nodes are used to resolve the buffer region (defined as 5 ≤ y+ < 30). In total, twenty-

five nodes cover the region y+ < 100. It has been found that this near-wall nodal distribution is

also fairly typical of other locations around the domain. This is certainly expected to be sufficient,

if not excessive.

Using the three grids defined above, a grid sensitivity study has been performed. In order to

quantify grid dependence, plots of the wall shear-stress along the lower wall, downstream of the

step, have been taken. Figure 7.5 shows these plots. From Figure 7.5 it can be seen that there

is a relatively large difference in the predicted wall shear stress between the coarse and medium

grids. However, the difference between the medium and fine resolution grids is small, and hence the

medium resolution solution can be considered a grid independent solution. All subsequent results

have therefore been obtained using the medium grid resolution (33, 000 nodes).

It is interesting to note that for the coarsest grid resolution used (16, 500 nodes), a converged

solution could not be achieved when using standard linear interpolation at the interpolation bound-

ary cells. Analysis has revealed that the issue is due to the fact that the bulk correction algorithm

matches the outlet mass flux with that of the inlet. However, since the outlet and inlet are on

different grids, there is no guarantee that a zero net mass flux would be achieved on each sub-grid

due to the non-conservative nature of the linear interpolation. As the grid resolution is increased,

interpolation errors are reduced and hence the problem is easily avoided simply by refining the grid.

Alternatively, by using a (semi-)conservative interpolation algorithm, the issue can be avoided, even

for coarse grids. When using the MFBI interpolation algorithm, convergence was achieved at all the

grid resolutions considered.

220

7.5 Results

7.5.1 Reattachment Point

The point of flow reattachment is characterised by a zero wall shear stress. This follows from the

fact that at the reattachment point, the velocity component parallel to the wall, at an infinitesimal

distance from the wall, is equal to zero. Using this definition, it can be seen from Figure 7.5 that

a reattachment point of around x/H = 8.3 is predicted (at grid independence). However, in the

experimental work of Chun and Sung, [60], the reattachment point is not determined in this way,

and is instead defined as the point at which the x-component of the flow velocity in the vicinity of

the wall (at y/H = −0.98), is equal to zero. Using this approximation, a reattachment point of

x/H = 7.3 is predicted by the present study. A large elongation of the simulated recirculation region

very close to the wall has been observed, which explains the relatively large difference between the

zero wall shear stress point, and the approximated reattachment point via the method of [60].

The reattachment point, approximated in a way consistent with [60] (i.e. at x/H = 7.3), is

in reasonable agreement with the experimental findings, in which an approximated reattachment

point of x/H = 7.8 was found. Given the relative simplicity of the turbulence model, this is an

encouraging agreement.

Note that in the absence of the length scale correction term, it has been found the standard

Launder-Sharma model predicts a reattachment length of just 6.5H, as can be seen from Figure 7.6,

where plots of the wall shear stress along the lower wall are presented, both with and without the

length scale correction term activated. It can be seen from Figure 7.6 that the predicted (negative)

wall shear stress in the recirculation region is excessive in the absence of the length scale correction

term. This is due to the turbulence generation in the recirculation zone being far from equilibrium,

resulting in very high levels of turbulent transport close to the lower wall. This acts to reduce the

thickness of the viscous near-wall layer, thereby increasing the wall shear stress. With the length

scale correction term active however, the near-wall turbulence is reduced, resulting in a thicker

viscously prominent near-wall layer, and hence a lower wall shear stress. The stark difference the

length scale correction term makes highlights the importance of its use for separated flows.

221

7.5.2 Mean Velocity

Figure 7.7 shows the predicted streamlines for the back-step flow considered. It can be seen from the

figure that the curvature of the dividing streamline (i.e. the streamline connecting the separation

point to the reattachment point) changes sign, with the point of inflection around 1− 2 step heights

upstream of the reattachment point. Downstream of the point of inflection, the dividing streamline

runs near-parallel to the wall (and close to the wall) over a considerable distance before eventual

reattachment (see the insert of Figure 7.7). This is a result of the flow conforming to the contour of

the lower wall before impingement, and is due to the adverse pressure gradient in the wall-normal

direction near to the impingement point. It is this streamline curvature (and the entrainment of the

surrounding fluid), that results in the strong elongation of the primary recirculation region close to

the wall that has been observed.

It can also be seen from Figure 7.7 that a small secondary recirculation region is present in the

corner where the vertical wall (i.e. the step) and the lower wall meet. The size of this secondary

recirculation region is perhaps a little smaller than expected. Previous computational studies had

predicted a stronger (larger) secondary vortex (see for example Momeni, [61, 62]). A small secondary

recirculation region implies high levels of turbulence in the surrounding region. Since the turbulence

levels in the recirculation region are particularly sensitive to the length scale correction term, alter-

native length scale correction treatments between previous computations and the present study may

explain the differing predictions. It is not clear from [61] of the form of length scale correction that

was employed (or indeed if any length scale correction was used at all) hence a direct comparison is

not instructive. Unfortunately, the experimental data provided in [60] offers little insight into the

structure of the secondary recirculation zone, so it is unclear if the size of the secondary recirculation

zone is consistent with experiment. In any case, the use of a linear EVM to quantitatively predict

secondary flow features where high turbulence anisotropy is expected is perhaps a little optimistic,

so a qualitative statement simply that such features exist in the simulated flow-field is arguably

sufficient.

Figure 7.8 shows profiles of the normalised streamwise velocity at several streamwise locations

within the range 1 ≤ x/H ≤ 9. Comparisons have been made against the experimental data

provided by [60] (note that only positive streamwise velocity data is provided in [60], with any

negative contributions omitted, hence comparisons can only be made for the upper portions of the

222

recirculation region and above). It can be seen from Figure 7.8 that there is generally a good

agreement between the computation and experiment.

Figures 7.9 and 7.10 show contours of the streamwise and transverse velocity components re-

spectively. It can be seen from the figures that continuous solutions are obtained from one grid to

the next, thereby supporting the capability of the MFBI interpolation algorithm, and of the overset

method in general.

7.5.3 Turbulence results

Figure 7.11 shows profiles of the normalised streamwise turbulence intensity (u′2/u2
bulk), at the same

streamwise locations as those of the velocity profiles presented earlier. It can be seen from Figure 7.11

that a generally good agreement in the streamwise normal stress is achieved in the upper portion

of the shear layer and above (i.e. at y/H values above the location of the maximum predicted

stress). However, there is a significant under-prediction in the normal stress levels close to the lower

wall (this is particularly apparent at the profiles obtained at x/H = 7 and beyond, where more

near-wall experimental data is available). There is also a significant underestimation of the peak

levels of normal stress, which is also particularly apparent at increasing downstream profile locations,

suggesting an insufficient rate of recovery in the shear layer. Part of the reason for these discrepancies

is due to the anisotropic nature of the turbulence not being captured. The streamwise normal stress

is bound to be the dominant normal stress component since the dominant mean velocity gradient

energising the turbulence in the shear layer is the streamwise velocity gradient in the cross-stream

direction, ∂u/∂y. However, since the computational model sets all three component as equal to one

another, the streamwise normal stress component tends to be underestimated, while the cross-stream

component tends to be overestimated.

For completeness, profiles of the turbulent shear stress are also presented in Figure 7.12, although

no experimental comparison is available in this instance.

Figures 7.13, 7.14 and 7.15 show normalised contours of turbulence kinetic energy, turbulence

dissipation rate and the turbulent viscosity ratio respectively, and have been included in order to

demonstrate the continuity of the solution across the overset grids for the turbulence variables. It

can be seen from the figures that continuous solutions are obtained.

223

7.5.4 Pressure

Figure 7.16 shows a plot of the pressure coefficient, CP , along the lower wall downstream of the

step, with experimental comparison. It can be seen that a good agreement between computation

and experiment is obtained downstream of the recirculation region (e.g. at x/H > 9), however

the agreement is less satisfactory within the recirculation region. This suggests the overall shape

of the recirculation region has not been accurately depicted by the computation. The pressure in

the recirculation region is low so as to balance the centrifugal force associated with the streamline

curvature in the recirculating flow. Further downstream, the pressure increases since the flow is

decelerated relative to the inlet channel due to the expansion. The figure suggests a faster pressure

recovery following the recirculation is predicted than is observed experimentally. This suggests that

the strong elongation of the streamlines that was observed near to the reattachment point in Figure

7.7 may not occur in the experiments, since such an elongation effectively reduces the curvature,

and hence the centrifugal force would be lower.

It has been previously noted (in Section 7.5.2), that the curvature of the dividing streamline

changes sign a short distance upstream of the reattachment point. Given that the curvature of

a streamline is related to the pressure gradient perpendicular to the streamline, with the radius

of curvature pointing in the direction of decreasing pressure, this streamline curvature suggests

a low pressure region at the core of the recirculation region, and a high pressure at the point

of reattachment. This is supported by Figure 7.17, in which a contour plot of the pressure field

throughout the domain is presented. Figure 7.17 also serves as a useful demonstration of the ability

of the overset method to provide continuous solutions for the pressure from one grid to the next.

Note that when using standard linear interpolation, there were ‘kinks’ in the predicted pressure

near the interpolation cells, which required a reasonably fine grid in the overlap region to be elim-

inated. However, when using the MFBI interpolation method, the kinks are not present even for

the coarsest grids considered. The cause of the kinks is due to a small net mass imbalance caused

by non-conservative interpolation, and also due to the over-prescription of boundary conditions, as

previously discussed.

224

7.6 Summary

The flow over a backward facing step configuration has been simulated via the use of a two-equation,

low-Reynolds number turbulence closure. Overset grids have been used to mesh the regions upstream

and downstream of the step separately. It has been found that a good agreement between compu-

tation and experiment is obtained for the streamwise velocity profiles, despite a relatively poor

agreement for the streamwise Reynolds stress predictions. Contour plots for all primitive variables

(or derived variable in the case of the turbulent viscosity) have revealed good solution continuity

from one grid to the next. The predicted reattachment length is also in reasonable agreement with

experiment (around 6% discrepancy). Overall, the overset method has proved to be a useful tool,

even for this simple geometry, since high aspect ratio cells within the core of the domain can be easily

avoided, thereby reducing numerical stability issues and the resultant need for an excessively low

under-relaxation factor to compensate (as is often the case for a block-structured grid arrangement).

225

7.7 Figures

Figure 7.1: Typical flow features encountered in a backward-facing step flow.

226

x/H

y/
H

0 5 10 15 20 25 30 35 40

-1

0

1

2

(a) Full meshed domain (note the different scales for the x and y axes).

x/H

y/
H

-1 0 1 2 3

-1

0

1

2

(b) Close up of grids around overlap region.

Figure 7.2: Coarse grids (16, 500 nodes) used for backward facing step flow simulation. Every
second grid-line omitted for clarity.

227

326 CHAPTER 6. BACKWARD-FACING STEP

Figure 6.4: Extent of two-dimensionality for ReH = 33000 studied experimentally

by Chun and Sung (1996)

X / H

Y
/H

-5 0 5 10 15 20 25 30 35
-1

0

1

2

3

Figure 6.5: Grid arrangement in backward-facing step flow
Figure 7.3: Sample Block-Structured grid arrangement.

lllllllllllllllllllllllll

y+

u+

10-1 100 101 102

5

10

15

20

25

30

Cell Centroidl

Figure 7.4: Typical near-wall grid spacing. Vertical tags at the top of the plot denote the
dimensionless location of the centroid of the first twenty-five near wall cells. Profile obtained

at x/H = 20 on lower wall, for the medium resolution grid.

228

Figure 7.5: Grid sensitivity test. Plots of skin friction coefficient along the lower wall,
downstream of the step, for three different grid resolutions.

229

Figure 7.6: Plots of skin friction coefficient along the lower wall, downstream of the step,
with and without the length scale correction term (33,000 node grid).

230

Figure 7.7: Flow streamlines, with close-up around reattachment point. Re = 33, 000.

231

x/H

y/
H

0 2 4 6 8
-1

0

1

2

3

4

U/Uin

0 1 0 10 1 0 1 0 1

Present Study
Experimental

Figure 7.8: Normalised streamwise velocity profiles at x/H =1, 3, 5, 7 and 9. Experimental
data from [60]. Re = 33, 000.

-0.1
-0.1 0

0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.40.4

0.4
0.4

0.50.5

0.50.5

0.60.6

0.6

0.7

0.7

0.8
0.8

0.80.8

0.9

0.9

0.9
0.9

1

0.10.4 0.5

x/H

y/
H

0 2 4 6 8 10 12

-2

-1

0

1

2

3

Figure 7.9: Contours of normalised streamwise velocity, u
ubulk

. Re = 33, 000.

232

-0.055
-0.05

-0.05

-0.
045

-0.04

-0.04

-0.035

-0.035

-0.03

-0.03

-0.025

-0.025

-0.02

-0.02

-0.015

-0.015

-0.015

-0.015

-0.01
-0.0

1

-0.01

-0.01

-0.005

-0.005

0

0

0.005

0.005

0.010.015

0.015

0.03

-0
.0
05

x/H

y/
H

0 2 4 6 8 10 12

-2

-1

0

1

2

3

Figure 7.10: Contours of normalised transverse velocity, v
ubulk

. Re = 33, 000.

x/H

y/
H

0 2 4 6 8 10

0

2

4

0 20 2 0 20 2 0 2

100 u’2/Ubulk
2

Present study

Experimental

Figure 7.11: Profiles of normalised streamwise normal stress, 100u′u′/u2
bulk at x/H =1, 3, 5, 7

and 9. Experimental data from [60].Re = 33, 000.

233

Figure 7.12: Profiles of normalised shear stress, at x/H =1, 3, 5, 7 and 9. Re = 33, 000.

234

Figure 7.13: Contours of normalised turbulent kinetic energy, k/u2
in. Re = 33, 000.

235

Figure 7.14: Contours of turbulent dissipation rate, ε. Re = 33, 000.

236

2020

2020

8080

8080

8080
80 140140

140
140

200

200 200

260

260 260

320

320 320

380
380

380

440

440 440

500
500

500
560

80

80

x/H

y/
H

0 2 4 6 8 10 12

-2

-1

0

1

2

3

Figure 7.15: Contours of turbulent to laminar viscosity ratio, µt/µ. Re = 33, 000.

x/H

C
P

0 5 10 15-0.1

0

0.1

0.2

0.3

0.4

Present study
Experiment

Figure 7.16: Pressure coefficient along the lower wall. Experimental data from [60].
Re = 33, 000.

237

Figure 7.17: Contours of normalised pressure, P/(0.5ρu2
in). Re = 33, 000.

238

Chapter 8

Two element airfoil turbulent flow

computations.

The Figures referred to within this chapter can be found from Page 251 onwards.

8.1 Introduction

In this chapter, the turbulent flow over a two element airfoil is considered. Multi element airfoil

configurations pose many challenges in mesh generation. A multi-block structured mesh is generally

very challenging to generate. This is particularly true for configurations involving both slats and

flaps, or flaps which comprise of more than one component. The benefits of the overset method in

this situation are clear. Simple body fitted grids around each airfoil component are independently

generated and overlaid onto a ‘background grid’. The problem is reduced to one of generating

C-shape grids around each component, while the background grid can be Cartesian.

The body fitted grids around each airfoil component should ideally extend beyond the fluid

boundary layer in order to avoid the undesirable situation where interpolations are conducted at

regions of the domain where the flow variables vary rapidly. Since the boundary layer thickness of

a slender body such as an airfoil is usually rather thin (e.g. of the same order as the maximum

thickness of the airfoil), the total region of the domain occupied by body fitted curvilinear grids

does not need to be large. The vast majority of the domain away from the airfoil can be meshed via

239

the use of Cartesian grids. This is desirable from a computational efficiency viewpoint (provided the

flow solver is coded to take advantage of this) since Cartesian flow solvers are much more efficient

in terms of both CPU and memory usage than their more general counterparts with curvilinear

capabilities.

The turbulent flow over a multi element airfoil is characterised by large adverse pressure gradients,

strong streamline curvature, possible flow separation with the added possibility of unsteadiness in

the separation bubble, in addition to transition at multiple points on the various airfoil components.

All these features provide significant challenges for the turbulence model. As such, it is expected that

a relatively complex model would be required in order to correctly predict all flow features with a

reasonable level of accuracy. However, the focus of the present study is to demonstrate the ability of

the overset grid method in dealing with the complex geometry presented by a multi-element airfoil

configuration. As such, a relatively simple turbulence model has been employed (a low-Re k − ε

model), and accurate flow predictions cannot necessarily be expected. Despite this, it is shown that

a very good agreement is found between computation and experiment for the surface pressure (and

hence also the lift and moment coefficients). Reasonably satisfactory mean velocity predictions are

also made, and any discrepancies are consistent with the shortcomings of a linear eddy viscosity class

of turbulence closure reported elsewhere using structured grids (particularly closures that employ a

transport equation for ε, as is the case in the present study).

8.2 Computational domain and airfoil geometry

Figure 8.1 shows the geometry of the computational domain. This is the same geometry as that

considered experimentally by Adair and Horne [63]. Tunnel walls have been included in the simu-

lations owing to the large model dimensions relative to those of the tunnel, thereby leading to the

possibility of significant tunnel wall blocking effects.

The two-element airfoil configuration comprises a NACA 4412 main airfoil with a NACA 4415

flap. The flap has a chord length of 0.4c (where c is the main airfoil chord length). The location of

the flap relative to the main airfoil is specified in terms of the flap gap (FG), the flap overlap (FO),

and flap deflection (δf) (See Figure 8.1). The values of FG, FO and δf used in the present study

are 0.035c, 0.028c and 21.8◦ respectively. The angle of attack of the main airfoil, α, is set to 8.2◦.

Note that the flap angle is specified relative to the main airfoil angle of attack rather than to the

240

horizontal (the flap deflection from the horizontal is δf + α = 30◦).

8.3 Numerical Model

The flow considered here is turbulent, and hence a turbulence model is required. The low-Reynolds

number k − ε Launder Sharma model [2] has been used for this purpose. The turbulence variables

have been discritised via the use of the UMIST scheme, while the QUICK scheme has been used for

the velocity components.

The experimental setup detailed in [63] included boundary layer trips on both the pressure and

suction surfaces of the main airfoil (at x/c = 0.025 and x/c = 0.01 respectively). In the present

computations, transition is set at these locations for the main airfoil by turning off turbulence

production for all cells upstream of the main airfoil’s trips. The turbulence variables are permitted

to be convected and diffused upstream of the trips in accordance with their governing transport

equations. It is simply Pk that is set to zero in this region. It should be noted that there is no

transitional state in the present computations; Pk is either on or off.

Experimentally, there is also a boundary layer trip located on the suction surface of the flap

(at a distance x/c = 0.01 from the flap’s leading edge). However, this trip has not been accounted

for. It will be seen that transition on the upper flap surface occurs further downstream for the

computation than the experiment because of this, thereby adversely affecting the results. There is

little that can be done in order to account for the presence of the flap trip given its close proximity

to the experimental rake locations (and hence the area of interest). Attempts were initially made to

account for the trip by multiplying the production term for the k equation by various set amounts

(e.g. a factor of 10) for all computational cells in the vicinity of the trip. While this did improve

the predicted transition location, the spurious turbulence levels that this method generated did not

have sufficient time to die out before the area of interest (near the flap’s leading edge and at the

flap’s mid-chord there is experimental data). This attempt was therefore abandoned and results

presented here are without any modelling of this trip.

8.3.1 Computational Grid

A grid comprising around 66,000 active cells has been employed (where active cells exclude those that

have been blanked by the hole cutting algorithm). The total number of cells, including those that are

241

blanked is equal to around 70,000. While these additional blanked cells have some memory overhead,

they play no part in the computation, and hence have a negligible CPU overhead. Efficient Cartesian

background grids cover the majority of the domain (this is efficient since there are essentially two

flow solvers in the present code; one which can deal with Cartesian grids without having to compute

or store the unnecessary geometric data, while the other is a more general curvilinear solver). Figure

8.2 shows the mesh used, while Figure 8.3 shows a close-up of this mesh in the vicinity of the gap

between the main airfoil and the flap. It can be seen from the former figure that there are two

Cartesian grids used. The first is used to mesh the region upstream of the main airfoil’s trailing

edge, while the second is used to mesh the downstream region where a refinement in the cross-stream

direction is applied over the wake.

Previous computational studies of this geometry which have used structured grids have tended to

use more computational cells than are used here. Iaccarino and Durbin have used a structured grid

with 7 blocks and around 100,000 cells [64] (see Figures 8.4 and 8.5). In Figure 8.4 it can be seen

that high aspect ratio cells necessarily propagate outwards in the cross-stream direction towards

the tunnel walls, due to the streamwise refinement that has been applied over the flap region.

These additional cells increase computational costs, particularly given that significant relaxation

of the pressure would likely be necessary for convergence: Since the north and south faces have a

significantly different area to the east and west faces, there will be substantial heterogeneity in the

coefficients of the pressure correction equation. The larger terms, associated with the larger face

areas, will either be treated implicitly or explicitly depending on the sweep direction. In the former

case, the diagonal dominance of the equations is diminished, while for the latter case, the source

term is large (since the explicit terms are absorbed into the source). Both situations are undesirable.

In both cases, the stiffness of the set of equations is high, and hence convergence may be hampered.

Additionally, since the larger faces are aligned normal to the flow direction, a perturbation to the

streamwise velocity will produce a large mass imbalance in the cell, thereby producing a large

correction to the pressure. This correction may introduce a large spurious cross-stream velocity

correction through the smaller faces which, if not sufficiently relaxed, could cause instabilities. The

overset grid method can easily avoid this issue since the gridding is flexible and hence high aspect

ratio cells can generally be avoided (away from walls). Note that high aspect ratio cells are typically

still employed close to walls in order to efficiently resolve boundary layers. However in this case the

flow will generally be wall bounded, and the high aspect ratio cells are therefore generally aligned

242

with the flow direction. A perturbation to the main streamwise velocity in this case therefore has a

relatively small effect on the cell mass imbalance since the face area normal to the flow direction is

small.

Figure 8.6 shows a sketch of the domain decomposition that may be required to generate a block

structured grid such as that of Figure 8.4. It can be seen that there is considerable complexity in

such a decomposition, and this would likely take a great many hours to perform.

The NACA 4-digit specification dictates a blunt trailing edge. In many computational studies,

this blunt trailing edge is approximated by a sharp point, thereby facilitating the use of a closed

C-shaped grid around the airfoil. However, in the present study (and incidentally in the block-

structured grids of Figure 8.4), the blunt trailing edge has been preserved. In order to mesh the

geometry while including the blunt trailing edge, two overset grids have been used to mesh each

airfoil component (i.e. both the main airfoil and the flap), with one sub-grid comprising an open

C-shaped grid, while the other is used to close the gap in the vicinity of the trailing edge (see Figure

8.3). Similarly, it can be seen that two aligned blocks are used for each airfoil component in the

block structured grid, thereby further complicating the domain decomposition. The overset method

however, can deal with such geometrical complexity with ease.

All near wall cells were placed at a perpendicular distance of 4.6 × 10−6c from the wall, except

for the tunnel walls, and the very short walls comprising the blunt trailing edge just described. The

tunnel walls were modelled as ‘slip walls’ and hence did not require a near wall grid refinement, as

will be discussed in Section 8.3.2. At the blunt trailing edge walls, the mesh was not refined to such

an extent normal to the wall since it was found that significant refinement offered no appreciable

change in the solution, but increased computational costs substantially. The near wall grid spacing

was arrived at via a detailed grid sensitivity study, and yielded a y+ value for the airfoil’s near wall

cells of 0.6 or below in all cases (except at the blunt trailing edge).

Computations were carried out on a mesh with double the number of cells. No appreciable

difference in the results was observed through the use of such a fine mesh. In any case, the fine mesh

was used for all subsequent results presented here. Figure 8.7 shows selected results from this grid

sensitivity test, in which profiles of the streamwise velocity component at various locations at and

downstream of the main airfoil’s trailing edge are presented.

243

8.3.2 Boundary Conditions

At the inlet, a uniform velocity has been specified with a magnitude of 30ms−1, corresponding to

a Reynolds number of 1.8 × 106 based on the main airfoil chord length, (c). Turbulence intensity

levels at the inlet have been provided in [63] and are equal to 0.0025, 0.0085 and 0.0085 for u′/u,

v′/u and w′/u respectively. The corresponding turbulent kinetic energy has a value of 0.068J ·kg−1.

The value of ε at the inlet was set to ensure an essentially laminar flow upstream of the airfoil since

the experimental conditions showed very low turbulence levels due to the various screens fitted to

the wind tunnel. A turbulent to laminar viscosity ratio of 0.6 was found to work well, from which

the inlet value of ε̃ is computed via Equation 4.15 (see Chapter 4).

At the outlet, the pressure is set to zero while a zero gradient condition has been employed for

the turbulence variables and velocity components (with an overall bulk correction applied to the

normal component).

The no-slip condition has been used for all walls comprising the airfoil surfaces, while a slip

boundary condition has been employed for the tunnel walls (this is equivalent to a symmetry con-

dition and is achieved by enforcing a zero gradient condition for all variables, before setting the

wall-normal velocity component to zero). A slip boundary condition is used on the tunnel walls

since this provides a reasonable approximation of the blocking effect of the tunnel walls (albeit

without the slight additional blocking due to the presence of the thin tunnel wall boundary layers),

without requiring one to fully resolve the near wall region. A fully resolved no-slip condition at the

tunnel wall would require significantly more computational cells, especially given the low Reynolds

number turbulence model variant employed, which often requires a sufficiently fine near wall node

distribution for convergence.

Interpolations have been conducted via both the standard linear interpolation algorithm de-

scribed in Section 5.4.1, and the semi-conservative method described in Section 5.4.2. It was found

that for this particular case, no appreciable difference in the two methods was observed. This is

presumably due to the grid being sufficiently fine for the linear interpolation method to perform

in a satisfactory manner, and hence the semi-conservative approach was not required. The semi-

conservative approach did however increase convergence rates slightly; a feature of the algorithm

that has been discussed in earlier chapters.

244

8.4 Results

8.4.1 pressure distribution

An overview of the pressure field is provided in Figure 8.8, while Figure 8.9 shows the predicted

values of the pressure coefficient over the surfaces of the multi-element airfoil configuration, with

experimental comparison using data from [63]. The low pressure region over the upper surface of

the airfoil, caused by the flow acceleration over this surface, can clearly be seen. The former figure

shows very good continuity from one grid to the next for the pressure, even in regions of steep

solution gradients such as the gap between the main airfoil and the flap. It can be seen from the

latter figure that there is a very good agreement between the computation and experiment for the

surface pressure, suggesting also that the correct lift and moment coefficients have been captured

by the computation.

The predicted lift coefficient is equal to 3.28 for the present configuration, while a moment coef-

ficient of cm = −0.94 has been obtained (based on the torque about the quarter chord point). This

compares favorably with experimental values of 3.19 and −0.99 for the lift and moment coefficients

respectively [63], which were obtained via integration of the measured surface pressure distribution.

8.4.2 mean velocity

An overview of the mean velocity is reported in Figure 8.10 by means of flow streamlines. The

strong streamline curvature that is typical of high lift configurations is clearly evident from the

figures, presenting a considerable challenge for the turbulence model. This challenge is further

compounded by the regions of strong adverse pressure gradients that were earlier seen.

The detail of the flow at and downstream of the main airfoil’s trailing edge is assessed by means

of six profiles, for which there is also experimental data [63]. The first profile emanates from a short

distance upstream of the trailing edge of the main airfoil, while the final profile extends 0.25c into

the wake (measured from the flap trailing edge). The orientation of all profiles is normal to the wall.

Table 8.1 details the specific location and orientation of each profile.

Figure 8.11 shows profiles of the streamwise velocity component at each of the six stations

considered. It can be seen that the overall shape of the computed profiles is reasonably close to

that of the experimental data for all cases, and that the computation captures, with a reasonable

level of accuracy, the main flow features. Having said that, it should be noted that for profiles

245

Profile x/c β (angle from vertical)

1 0.989 23
2 1.031 14
3 1.187 37
4 1.308 44
5 1.322 0
6 1.558 0

Table 8.1: Location and orientation of profiles.

1-3, the distance to the edge of the shear layer (or boundary layer in the case of profile 1) is not

well captured by the computations, and hence the computed data is normalised with respect to

the computed boundary/shear layer thickness rather than the experimentally obtained value. The

discrepancy is around a 10% overprediction at profile 1, and 20% and 15% underprediction at profiles

2 and 3 respectively. The reason for these discrepancies is due to an overprediction of turbulence

levels around the main airfoil’s trailing edge region. At the root of the problem lies the general

inability of the k − ε class of models to deal with adverse pressure gradient flows in a satisfactory

way, generally predicting excessive turbulence levels. The excessive turbulence that is predicted acts

to increase the boundary layer thickness over the suction surface of the main airfoil upstream of the

trailing edge. As this excessive turbulence is convected downstream it acts to ‘fill’ the upper portion

of the wake rapidly, leading to a shorter predicted distance to the edge of the shear layer from

the flap surface. In the previously mentioned block structured calculation of Iaccarino and Durbin,

[64], a similar discrepancy has been reported despite the use of a more advanced turbulence model

in their work (the k − ε − v2 model, which employs an additional transport equation for v2 - the

normal stress component normal to the streamlines - in order to account for some of the turbulence

anisotropy).

Table 8.2 shows the values used to normalise the plots.

Profile Ue/Uin δ (exp. boundary layer/shear
layer/wake thickness, mm)

Correction applied to δ when
scaling computed plots

1 1.55 36 +11%
2 1.49 88 −19%
3 1.38 127 −15%
4 0.97 190 0
5 1.05 195 0
6 1.00 203 0

Table 8.2: Edge velocities and distances used to normalise plots.

246

Profile 1 (Figure 8.11) shows the streamwise velocity close to the trailing edge of the main airfoil.

The boundary layer shape seen here is typical of turbulent wall bounded flows. The turbulent

fluctuations act to transport high momentum fluid in the upper boundary layer region towards the

wall. Similarly, low streamwise momentum fluid close to the wall is transported towards the upper

region of the boundary layer. The former result acts to increase the near wall velocity gradient

relative to a laminar situation (thereby increasing wall shear stress), while the latter acts to increase

the overall boundary layer thickness.

It can be seen from the figure that the computed log layer velocity gradient is lower than that of

the experiment. This suggests that the Reynolds shear stress component, −u′v′, has been overpre-

dicted, which would also explain the reasons behind the overestimate in boundary layer thickness

mentioned earlier. It is noted that similar spurious results have also been reported by Rumsey and

Gatski, [65] for a different multi-element airfoil configuration using a k − ε class of model. In [66],

Rodi and Scheuerer show the shortcoming is due to an inadequate production of ε for flows subjected

to a strong adverse pressure gradient. It is this characteristic of the turbulence model employed that

necessitates the use of a different normalisation between computation and experiment.

Again with reference to Figure 8.11, Profiles 2-4 show the development of the streamwise velocity

over the flap. Here it can be seen that the shear layer from the main airfoil has started to merge

with the jet of fluid flowing through the gap between the flap and main airfoil, forming confluent

shear layers.

At Profile 2, it can be seen that the flap boundary layer is thin (for both computation and

experiment). The computed boundary layer however, is perhaps a little too thin. This suggests

insufficient levers of turbulence in the computations at this location, which is likely to be due to the

absence of the flap boundary layer trip in the computations. This trip is a short distance upstream

of the present profile location for the experiments and hence would be expected to have significant

affect on the flow here.

Immediately outside of the thin flap boundary layer, the velocity of the jet is seen to decrease

with increasing normal distance from the flap wall. This is mainly due to the flow acceleration

caused by the suction peak close to the flap’s leading edge. The streamwise pressure gradient is

greater close to the flap’s wall than further away, due to the tighter near-wall streamline curvature

of the former. The jet therefore experiences a non-uniform streamwise acceleration across its width.

At yet further wall-normal distance along Profile 2, the streamwise velocity is seen to decrease

247

rapidly as the wake of the main airfoil is traversed. Following the minimum wake velocity, a positive

velocity gradient is resumed as the velocity approaches that of the free-stream. It can be seen that

the computed results show a higher streamwise velocity in the wake than is observed experimentally.

This is again due to the excessive turbulence levels that are predicted around the main airfoil’s

trailing edge. The turbulent transport of momentum acts to bring high momentum fluid from the

free-stream into the wake, thereby ‘filling’ the wake. Since turbulence is overpredicted at the trailing

edge, this effect is overpredicted in the computation.

Moving on to Profiles 3 and 4, it can be seen that a reasonably thick turbulent boundary layer

on the flap upper surface is present which is broadly in agreement with experiment, suggesting

that transition has occurred at some point upstream of the third rake location. This is supported

by Figure 8.12 which shows the skin friction coefficient over the surface of the flap. Transition is

characterised by a sharp increase in the skin friction due to turbulent transport of high momentum

fluid towards the wall. It can be seen that transition is predicted too late, and hence the development

of the flow over the flap will be different in the computations than the experiment.

Profile 4 shows a small region of reversed flow close to the wall as separation occurs at a short

distance upstream of the flap’s trailing edge. This is observed both computationally and experimen-

tally, although the magnitude of the reversed flow seems to be slightly larger for the latter.

Profiles 5 and 6 (Figure 8.11) lie in the wake. Evidence of the trailing edge separation is again

seen via the reversed flap-wake flow for the former profile. This is seen in both the computation

and the experiment. At profile 6, the flap and main airfoil wakes seem to have merged into one

overall wake for the experimental data, but not for the computation. There is however insufficient

cross-stream resolution in the experimental data to determine conclusively if this is indeed the case.

The Reynolds stress profiles (to be presented presently) also suffer from relatively poor cross-stream

resolution, hence the presence, or otherwise, of the flap wake cannot be inferred from the Reynolds

stresses.

Overall, the streamwise velocity component is in reasonably close agreement with the experi-

mental data.

8.4.3 Turbulence Results

An overview of the turbulence field is reported in Figure 8.13 which shows contours of the turbulent

kinetic energy. It can be seen that the undisturbed flow turbulence levels are close to zero everywhere,

248

which is consistent with the very low experimental turbulence levels at the tunnel entrance in

the experiment. Turbulence levels are high over the suction surface of the main airfoil and flap.

The pressure surfaces of both components have a very thin turbulent boundary layer due to the

comparatively low mean velocity gradients normal to these surfaces. In addition, the low wall

normal mean velocity gradient across the width of the jet (reported previously) is responsible for

the low turbulence in the core of the jet that is seen to persist over the length of the flap and some

distance into the wake. In the wake, there are two major peaks in the turbulent kinetic energy which

are associated with the main airfoil’s upper and lower boundary layers (now separated into shear

layers). Smaller peaks in turbulence energy are also present and are associated with the layers of

high mean shear emanating from the flap surfaces. The turbulence levels at the peaks just described

are augmented by the streamline curvature associated with the wake deflection that occurs due to

relatively close proximity of the lower tunnel wall.

Figure 8.14 shows the streamwise component of normal Reynolds stress at the same profile

locations as were considered for the mean velocity. It can be seen from the figure that for all the

profiles, there is a significant underestimate in this Reynolds stress component. This comes as little

surprise since turbulence anisotropy is not modelled. The streamwise component is energised via

large ∂u/∂y mean velocity gradients and hence would be expected to be the larger normal stress

component.

At Profile 2, it can be seen that the computed u′2 Reynolds stress shows sharp peak at the

flap surface, which is consistent with the very thin boundary layer thickness reported earlier. The

experimental data suggests again that this boundary layer is somewhat too thin; this is due to the

absence of the flap boundary layer trip in the computation. By Profile 4, it can be seen that the

normal stress has grown significantly for the experimental data. This is presumably due to the large

mean velocity gradients that are present in the separated recirculating flow at the flap’s trailing

edge (as was seen in Figure 8.11). That the computed turbulence shows only modest growth in u′2

near the flap surface between Profiles 3 and 4 suggests that separation is predicted too late by the

computation. This was also suggested in Figure 8.11 where it was seen that the strength of the

reversed flow is weaker for the computed results.

Figure 8.15 shows profiles of the Reynolds shear stress. At Profile 1, it can be seen that the shear

stress is indeed overpredicted, thus explaining the excessive boundary layer thickness mentioned

earlier. The peak in turbulence levels associated with the recirculating flow near the flap surface by

249

Profile 4 is again unsurprisingly underpredicted by the computation (since separation is predicted

too late).

The overall trend in the Profiles of Figure 8.15 suggest that the computed results are reasonable,

and are as good as should be expected from a linear eddy viscosity model.

8.5 Conclusion

The turbulent flow around a two-element airfoil has been computed. The results that have been

obtained are in reasonable agreement with the experimental data. The main discrepancy seems to be

in the boundary layer thickness at the main airfoil’s trailing edge which is overpredicted by around

10%. This discrepancy is due to shortcomings of the turbulence model, and more specifically, due

to insufficient turbulent dissipation production in regions of strong adverse pressure gradient. Other

authors have also found similar shortcomings for the k − ε class of turbulence models, both for this

geometry using structured grids, and also for a similar geometry using overset grids.

The excessive levels of turbulence that are convected from the main airfoil’s upper surface act

to displace the wake downward since turbulent transport of momentum causes the upper portion of

the wake to be ‘filled’ rapidly. The shear layer thickness at Profiles 2 and 3 was therefore seen to

be underpredicted. Other than the large differences in the boundary/shear layer thicknesses, it has

been shown that the mean velocity is predicted with satisfactory accuracy.

The overset method has proven very useful for this geometry. Airfoil designs consisting of many

components could be handled by the method with ease. The same cannot be said for a block

structured arrangement, where each additional airfoil component would compound to the already

significant domain decomposition task.

250

8.6 Figures

251

F
ig

u
re

8
.1

:
G

e
o
m

e
tr

y
o
f

m
u
lt

i-
e
le

m
e
n
t

a
ir

fo
il
.

252

Figure 8.2: Overset mesh used, comprising of a total of 6 subgrids.

253

Figure 8.3: Close-up of meshes in gap region.

254

Figure 8.4: Mesh used in [64] for the study of the same geometry using block-structured
grids.

Figure 8.5: Close-up of mesh used in [64] for the study of the same geometry using
block-structured grids.

255

Figure 8.6: An example of the domain decomposition that may be required to achieve a
block-structured grid. Each coloured region represents a block.

256

P
ro

fi
le

1:

P
ro

fi
le

4:

P
ro

fi
le

2
:

P
ro

fi
le

5
:

P
ro

fi
le

3
:

P
ro

fi
le

6
:

F
ig

u
re

8
.7

:
P

ro
fi
le

s
o
f

th
e

st
re

a
m

w
is

e
v
e
lo

c
it

y
fo

r
tw

o
g
ri

d
re

so
lu

ti
o
n
s.

In
it

ia
l

g
ri

d
,

6
6
,0

0
0

c
e
ll
s

(G
re

e
n
)

a
n
d

fi
n
e

g
ri

d
,

1
2
0
,0

0
0

c
e
ll
s

(R
e
d
).

257

Figure 8.8: Contours of pressure coefficent Cp. Insert shows detail in region of gap.

258

x/c

C
P

0 0.5 1

-15

-10

-5

0

Computation
Experiment

Main Airfoil
Flap

Figure 8.9: Pressure distribution over main airfoil and flap

259

Figure 8.10: Flow streamlines. Insert shows detail in region of gap.

260

P
ro

fi
le

1:

U
/
U
e

η/δ

0
0.
2

0.
4

0.
6

0.
8

1
1.
2

-0
.50

0.
51

1.
5

P
ro

fi
le

4:

U
/
U
e

η/δ

0
0.
2

0.
4

0.
6

0.
8

1
1.
2

-0
.50

0.
51

1.
5

P
ro

fi
le

2
:

U
/
U
e

η/δ

0
0.
2

0.
4

0.
6

0.
8

1
1.
2

-0
.50

0.
51

1.
5

P
ro

fi
le

5
:

U
/
U
e

η/δ

0
0.
2

0.
4

0.
6

0.
8

1
1.
2

-0
.50

0.
51

1.
5

P
ro

fi
le

3
:

U
/
U
e

η/δ

0
0.
2

0.
4

0.
6

0.
8

1
1.
2

-0
.50

0.
51

1.
5

P
ro

fi
le

6
:

F
ig

u
re

8
.1

1
:

P
ro

fi
le

s
o
f

th
e

st
re

a
m

w
is

e
v
e
lo

c
it

y
.

P
ro

fi
le

lo
c
a
ti

o
n
s

a
re

in
d
ic

a
te

d
in

th
e

fi
g
u
re

(t
h
e

o
ri

e
n
ta

ti
o
n

a
n
d

lo
c
a
ti

o
n

o
f

th
e

p
ro

fi
le

s
in

th
e

sk
e
tc

h
is

a
c
c
u
ra

te
,

a
lt

h
o
u
g
h

th
e

le
n
g
th

is
n
o
t)

.
L

o
c
a
ti

o
n
s

a
re

a
ls

o
st

a
te

d
in

T
a
b
le

8
.1

.

261

Figure 8.12: Skin friction over the flap surface. Plot indicates that transition is predicted
too late.

262

Figure 8.13: Contours of the turbulent kinetic energy, normalised by the square of the inlet
velocity.

263

P
ro

fi
le

1:

1
0
0

u
u
/
U
e2

η/δ

0
1

2
3

4
5

6
7

-0
.50

0.
51

1.
5

P
ro

fi
le

4:

1
0
0

u
u
/
U
e2

η/δ

0
1

2
3

4
5

6
7

-0
.50

0.
51

1.
5

P
ro

fi
le

2
:

1
0
0

u
u
/
U
e2

η/δ

0
1

2
3

4
5

6
7

-0
.50

0.
51

1.
5

P
ro

fi
le

5
:

1
0
0

u
u
/
U
e2

η/δ

0
1

2
3

4
5

6
7

-0
.50

0.
51

1.
5

P
ro

fi
le

3
:

1
0
0

u
u
/
U
e2

η/δ

0
1

2
3

4
5

6
7

-0
.50

0.
51

1.
5

P
ro

fi
le

6
:

F
ig

u
re

8
.1

4
:

P
ro

fi
le

s
o
f

th
e

st
re

a
m

w
is

e
n
o
rm

a
l

st
re

ss
c
o
m

p
o
n
e
n
t
1
0
0
u
′ u
′ /
U

2 e
.

P
ro

fi
le

lo
c
a
ti

o
n
s

a
re

in
d
ic

a
te

d
in

th
e

fi
g
u
re

(t
o

sc
a
le

)
a
n
d

a
re

st
a
te

d
in

T
a
b
le

8
.1

.

264

P
ro

fi
le

1:

-
1
0
0

u
v
/
U
e2

η/δ

-1
0

1
-0
.50

0.
51

1.
5

P
ro

fi
le

4:

-
1
0
0

u
v
/
U
e2

η/δ

-1
0

1
-0
.50

0.
51

1.
5

P
ro

fi
le

2
:

-
1
0
0

u
v
/
U
e2

η/δ

-1
0

1
-0
.50

0.
51

1.
5

P
ro

fi
le

5
:

P
ro

fi
le

3
:

-
1
0
0

u
v
/
U
e2

η/δ

-1
0

1
-0
.50

0.
51

1.
5

P
ro

fi
le

6
:

F
ig

u
re

8
.1

5
:

P
ro

fi
le

s
o
f

th
e

sh
e
a
r

st
re

ss
c
o
m

p
o
n
e
n
t
−
1
0
0
u
′ v
′ /
U

2 e
.

P
ro

fi
le

lo
c
a
ti

o
n
s

a
re

in
d
ic

a
te

d
in

th
e

fi
g
u
re

(t
o

sc
a
le

)
a
n
d

a
re

st
a
te

d
in

T
a
b
le

8
.1

.

265

Chapter 9

Three-Dimensional Pipe Flows

The Figures referred to within this chapter can be found from Page 288 onwards.

9.1 Introduction

The overset grid method is a particularly useful tool for meshing pipe domains. For example, an

O-shaped grid can be used to depict the outer portion of the pipe, while the core can be meshed via

the use of a separate grid of Cartesian section. This therefore avoids the issues of a grid singularity

at the centre of the pipe that would be encountered via the use of a single O-shaped block. Complex

domain decomposition issues that are encountered when generating a block structured grid are also

avoided. The overset method is particularly useful for meshing junctions between two or more pipes.

In this case, a block structured grid would be particularly difficult to generate, while the overset

method can handle such domains with ease.

As with all internal flows, it is important in pipe flows to enforce global mass conservation via

the use of a bulk correction. The methods described in Section 3.6.1 can be used for this purpose.

However, due to the use of the two overlapping grids to depict the pipe geometry, computing the

mass flux through the inlet or outlet is complicated somewhat. The issue of avoiding counting the

overlap region twice has been outlined already, and is non-trivial for the general case where some

cells only partly overlap other grids. The grid zipping method described in Section 5.6 has been

used to overcome this problem. Previous computational studies have used individual sub-grids with

a singularity at the centre to deal with this issue [67, 68], and hence the flow solver would need to

266

be able to deal with prism shaped cells. This method also introduces high aspect ratio cells into the

core of the pipe which is undesirable from a convergence rate viewpoint. An alternative would be

to use block structured grids for individual pipe sections, with the overset method being used at the

interface between these pipes in order to deal with the geometrical complexity at a junction. While

this latter method is reasonably satisfactory, a certain amount of domain decomposition work still

needs to be done and hence the zipping algorithm appears to provide a better option.

In this Chapter, the flow through a 90◦ pipe bend and the flow through a branching artery (the

carotid bifurcation) are considered. For each of these flows, it will be apparent that the overset

method offers several advantages over alternative griding techniques.

9.2 The flow through a pipe with a 90◦ bend.

The flow through a pipe with a bend has been widely studied both experimentally and computation-

ally (e.g. [69, 70, 71, 72, 73, 74]) owing to the fact that such a geometry is frequently encountered

in many situations such as in the nuclear industry, in heat exchangers, in human anatomy [75], in

turbine blade thermal design [76], as well as a great many other situations. The flow in a pipe bend

also bears strong similarities to the flow in the human carotid bifurcation which will be considered

in the next section. The simpler geometry of a pipe bend has initially been considered in order

to further develop and test the overset algorithms described in Chapter 5 before applying them to

the more complex case of the flow in a generic human artery bifurcation. The study also serves

as a useful validation of the 3D capabilities that have been incorporated into the new CFD code

developed in this project.

While the geometry of the pipe bend is relatively simple, the flow is not; the interaction between

inertial, viscous and centrifugal forces generates secondary fluid motions (i.e. those in a plane

perpendicular to the axial flow direction). This results in the formation of helical vortex structures.

The transport of fluid via the secondary motions generates a marked distortion of the axial velocity

profile, shifting the peak in velocity from the centre of the pipe towards the outer side (i.e. away

from the centre of curvature). This consequently affects the wall shear stress, yielding a non-uniform

shear in circumferential and axial directions (contrary to that which would have been observed for

Poiseuille flow where the wall shear stress is uniform at all points on the pipe).

267

9.2.1 Geometry, boundary conditions and numerical model.

The specific geometry studied here is the same as that considered experimentally in [77]. The bend

in this case turns through 90◦ before a straight section is resumed. An important geometrical factor

describing the bend is the ratio r/R which in this case is equal to 1/6 (where r is the pipe radius

and R is the radius of curvature of the bend). The flow conditions for the present study are laminar

at a Reynolds number of 700 based on the pipe diameter and inlet bulk velocity. The corresponding

Dean number (De = Re× (r/R)0.5) is approximately equal to 286.

In the experiments, a straight inlet section 100r in length was used to ensure fully developed

conditions at the entrance to the bend. In the present study, this inlet section length has been

reduced to 10r and a parabolic profile for the axial velocity has been applied at the inlet boundary.

The outlet boundary was placed a distance 14r from the exit of the bend. Zero gradient boundary

conditions have been applied at the outlet for the three Cartesian velocity components, with an

overall bulk correction applied to the axial component in order to ensure global mass conservation

(see Section 3.6.1). The grid zipping algorithm [53], described in Section 5.6, has been used in order

to integrate the mass flux over both the inlet and outlet. Pressure at the outlet has been set to zero.

The pipe walls have the no-slip condition applied.

9.2.2 Computational mesh

Details of the computational mesh are reported via Figure 9.1. A total of 198, 000 cells have been

employed (106×21×21 cells in the streamwise and transverse directions respectively for the Cartesian

section grid, and 106× 26× 55 cells in the streamwise, radial and azimuthal directions respectively

for the polar grid). This grid is of a slightly finer resolution, with a similar distribution to that used

in [1], for which grid independence has been confirmed.

All computations are performed with the QUICK convection scheme. Pressure velocity coupling

is achieved via the use of the SIMPLE algorithm. The MFBI algorithm is used for inter-grid

interpolations.

268

9.2.3 Results

Axial flow

An overview of the axial velocity in the symmetry plane is reported via Figure 9.2. Here it can

be seen that there is a skewing of the axial velocity towards the outer side of the bend. There is

a transport of axial momentum towards the outer wall by the secondary flow, as will be discussed

presently.

Figure 9.3 shows comparison between computation and experiment for the axial velocity at the

intersection of the symmetry plane with several planes normal to the axial direction. The locations

of the planes are defined by the angle θ, which is defined as the bisection angle made between a plane

located at the entrance of the bend (perpendicular to the streamwise direction), and the current

plane under consideration (see Figure 9.1). It can be seen that the agreement between computation

and experiment is very good.

Secondary flow

Figure 9.4 shows vectors of the secondary flow in several planes perpendicular to the streamwise

direction. Contours of the axial velocity are superimposed so as to show all three velocity components

within the same figure. Enlarged plots of the secondary flow along selected planes are also made

available in Figures 9.5 and 9.6 since the overall comparative view provided in Figure 9.4 does not

necessarily facilitate clarity.

It can be seen from Figure 9.4 that at the entrance to the bend (θ = 0◦), there is evidence of

secondary flow before the bend occurs. This is due to the upstream influence of the bend commu-

nicated via the pressure, with a local minimum at the inner side of the bend and a local maximum

on the outer side. This pressure gradient must be present within the bend in order to balance the

centrifugal force associated with the curvature due to the bend. It must also extend a short distance

upstream of the bend in order to avoid an unphysical discontinuous pressure field at the bend’s en-

trance. This pressure gradient directs the secondary flow towards the inner side of the bend, along

this favorable pressure gradient. The pressure in the symmetry plane is shown in Figure 9.7.

Between θ = 4.6◦ and θ = 11.7◦ it can be seen that the secondary flow direction is from the outer

bend wall (α = 0) toward the inner bend wall (α = π), around the circumference of the pipe. The

opposite is true for the flow along the symmetry plane (i.e. the flow direction here is from the inner

269

side of the bend to the outer side). The strength of the secondary flow is seen to intensify between

the θ = 4.6◦ and θ = 11.7◦ planes. It can also be seen from the figure that the axial flow shows little

variation from θ = 4.6◦ to θ = 11.7◦ despite the increased intensity of the secondary flow. This is

due to the high axial-momentum of the fluid at the core of the pipe, and its consequent high inertia

that resists deflection by the secondary flow.

Between the θ = 23.4◦ and θ = 58.5◦ planes, however, the axial velocity contours start to show

some distortion due to the momentum transport by the secondary flow, as the latter intensifies yet

further. The cross flow along the symmetry plane acts to transport low momentum fluid, that was

originally at the inner side of the bend, towards the centre of the pipe, and also to transport the high

momentum fluid that was originally at the centre of the pipe towards the outer side. Similarly, the

circumferential secondary flow acts to transport this displaced high momentum fluid, now located at

the outer side of the pipe, around the circumference of the pipe, resulting in a significant distortion

of the axial velocity contours which resemble ‘C’ or kidney bean shapes by θ = 58.5◦ (this can also

be seen more clearly in the enlarged Figure 9.5).

It can be seen from the figure that between θ = 23.4◦ and θ = 58.5◦ the cross flow strength along

the symmetry plane is decreasing with increasing streamwise distance along the pipe (i.e. with

increasing θ). This is due to the fact that the secondary flow along the symmetry plane experiences

a strong adverse pressure gradient, and therefore favors moving toward the top of the pipe (at

α = 0.5π), along a near zero pressure gradient, rather than towards the outer side of the bend.

The strength of the adverse pressure gradient is also increased as the bend is traversed, thereby

enhancing this effect with increasing θ. The result is the smaller tighter vortex structure that is

observed at θ = 58.5◦, which occupies one quadrant of the pipe from 0.5π ≤ α ≤ π (in addition to

the symmetrical vortex, not presented, located within the quadrant π ≤ α ≤ 1.5π).

By θ = 81.9◦, it can be seen that the extent to which the fluid moves toward the top of the pipe

(α = 0.5π), from the centre of the pipe via the secondary flow has increased relative to the θ = 58.5◦

plane. A secondary vortex is generated via the shear force imposed on the fluid by the primary vortex

(this is much clearer in Figure 9.6 where an enlargement is provided). The quad-vortex structures

in this plane are observed in both the computation and the experiment. The secondary vortex acts

to redistribute axial momentum from the outer side of the bend towards the centre, and also reduce

the strength of the circumferential flow. This results in an increase in the axial flow velocity at the

centre of the pipe (relative to θ = 58.5◦) and a consequential decrease in the axial velocity towards

270

the outer side of the bend. This effect is also augmented by the fact that the C-shape contours have

started to close in on themselves as a result of the circumferential flow, resulting in near O-shapes.

This means that the transfer of momentum by the secondary flow along the symmetry plane will

start to bring this high momentum fluid back into the centre of the pipe.

The secondary flow that was observed in Figure 9.4 is generated due to the centrifugal force

associated with the streamline curvature which results from the pipe bend. A pressure gradient

acting towards the inner side of the bend is established in order to balance this centrifugal force.

The fluid located at the core of the pipe resists bending to the same extent as the fluid that is located

closer to the pipe wall, due to the high axial-momentum (and inertia) of the former. Conversely, the

low axial-momentum fluid located near the top side of the pipe, caused by the viscous interaction

imposed by the no slip condition, ‘feels’ the affect of the pressure gradient to a greater extent than

the core fluid, and therefore turns with a smaller radius of curvature (relative to the core flow). A

secondary flow following the circumference of the pipe therefore results, flowing from the outer side

to the inner side of the bend. A resultant flow is also established acting against the pressure gradient

and along the symmetry plane. This is required in order to prevent the accumulation of fluid at the

inner side of the bend that would otherwise occur, which would cause a violation of the conservation

of mass.

The secondary flow just described is now quantified via Figure 9.8. Experimental comparison is

made against the data of [77]. In the figure, profiles of the x-velocity component are taken at three

locations normal to the symmetry plane in each of the θ planes considered. It can be seen from the

figure that there is generally a very good agreement between the computation and the experiment,

as would be expected for a laminar flow. Experimental error is likely to play a significant role in any

minor discrepancies that may be observed since further grid refinement yielded no significant change

to the computed results. The error for the secondary velocity components is reported as 5% in [77].

However, in addition, due to the finite width of the two incident laser beams used to produce an LDA

measurement, the velocity is not measured at a single point, but rather is averaged over an ellipsoid

volume. The reported velocities are therefore an average over the volume of this ellipsoid. In [77], the

measurement ellipsoid is reported to be 0.12r in length, with a diameter of 0.015r. The experimenters

note that this measurement volume may be sufficiently large to introduce significant error in regions

of high velocity gradients, such as near the pipe wall. The largest discrepancy between computation

and experiment does seem to occur near the top wall for the two off-centre profiles (particularly at

271

11.7 ≤ θ ≤ 39.8) . The long length of the measurement volume would necessarily incorporate the

very low velocity fluid immediately adjacent to the pipe wall at these probe locations, thus causing

an underestimate in the secondary velocity here, as is observed. Whether or not this is the reason

behind the discrepancy is not clear, but one should not lose sight of the fact that the discrepancy is

very minor.

9.2.4 Conclusion

Comparisons between computation and experiment for the flow through a pipe subjected to a 90◦

bend have shown that generally a very good match has been achieved. The secondary flow induced

by the pipe bend has been shown to have been convected well across the overlapping grid interface.

The results found in this section will be important for the carotid bifurcation flow which shall now

be considered.

272

9.3 The Carotid Bifurcation

In human anatomy, there are two common carotid arteries; one on the left of the neck, and the other

mirroring on the right. It is these two arteries that provide blood to the head. Within the upper

neck, the common carotid artery divides into the internal and external carotid arteries, and it is this

division that is described as the carotid bifurcation. Figure 9.9 illustrates a typical location of the

carotid bifurcation.

The deposition of plaques of fatty material onto the inner walls of an artery is a common cause

of arteriosclerotic vascular disease. It is well recognised that there is a tendency for these deposits

to occur within the region of a bifurcation [78, 79], for reasons that are now outlined.

In bifurcation regions, injury to the endothelial lining can occur due to a locally high wall shear

stress, or due to a periodic change in stress’ direction of action throughout the cardiac cycle [78].

One pivotal role of the endothelial lining is to facilitate blood flow by providing an smooth inner

arterial wall that impedes clotting. Any injuries to this lining may impair this function, thereby

leading to possible arteriosclerotic vascular disease.

As well as the mechanical damage just described, arteriosclerotic vascular disease also has a

tendency to form in regions of low wall shear stress. In this case, the ability of the blood flow to

advect fatty deposits away from the wall is inhibited, and hence a build-up may occur.

The geometric features posed by a bifurcation naturally induce regions of both locally high and

low wall shear stresses (relative to a typical non-branching artery’s wall stresses), and it is for this

reason that arteriosclerotic vascular disease is typically encountered around a bifurcation.

Attaining a detailed understanding of the complex flow physics in the bifurcation region may

lead to advanced medical diagnosis techniques whereby imaging downstream of a branching may

be used to determine the presence of a possible upstream blockage (e.g. by matching the obtained

flow profiles with those computed for both diseased and non-diseased arteries) [80]. Furthermore,

a detailed understanding of a bifurcation flow physics is important for the design of artificial blood

vessels such as those in use in experimental research [81], or even transplant surgery [82].

9.3.1 Computational model

Blood flow in the Carotid artery bifurcation is particularly complicated due to pulsatory nature of the

flow, the non-Newtonian nature of the fluid, the elastic nature of the arterial walls, and the complex

273

geometry. However, several simplifying assumptions have been employed here. In the present study,

a steady flow is considered with a Newtonian working fluid and rigid walls. Some justification for

these simplifications shall be offered. Firstly, in the experimental work of Merrill and Pelletier, [83],

it has shown that blood exhibits a Newtonian behaviour for a shear stress of 0.15N/m2 and above.

The shear stress throughout the vast majority of the bifurcation region exceeds this value, and hence

non-Newtonian effects are expected to play only a small role in this study. The justification of using

a steady model and rigid walls lies in the fact that the carotid artery experiences a relatively constant

flow for approximately two-thirds of the cardiac cycle [84]. During this period, the arterial walls will

cease to distend, and the flow will start to approach a steady state. Hence the use of a steady state

model with rigid walls is not wholly inappropriate. In any case, the main objective of the present

study is to demonstrate the use of the overset method in dealing with complex geometries rather

than to necessarily provide a physically realistic model of the artery. Furthermore, the simple model

considered here provides an important first step toward a more complete model including some (or

all) of the additional physics neglected here.

Note that in the experimental data provided by References [80] and [84], as performed by Bharad-

vaj et. al., the same approximations as those outlined above were used, hence a direct comparison

is possible.

Computations have been conducted with the QUICK convection scheme and the MFBI interpo-

lation scheme for inter-grid communication transfer. Pressure velocity coupling is achieved via the

SIMPLE algorithm.

9.3.2 Boundary conditions and geometry

Throughout the cardiac cycle, instantaneous Reynolds numbers ranging from 380 to 1200 are typi-

cally encountered, [80]. Here, (and in Reference [84]), Reynolds numbers of 400, 800 and 1200 have

been considered (based on the common carotid artery diameter, and the bulk velocity at the inlet

of the common carotid). The flow is laminar over the full range of Reynolds numbers considered,

and hence no turbulence modelling is required.

At the inlet, a parabolic velocity profile has been applied, with a bulk velocity consistent with the

above mentioned Reynolds numbers. This inlet profile is consistent with fully developed conditions

for laminar pipe flows. In the experimental data provided by [84], the inlet pipe was 88 tube

diameters in length, hence the fully developed assumption is applicable. In a real human carotid

274

artery, the pulsatory nature of the flow induces periods throughout the cardiac cycle where a non-

parabolic inlet profile occurs. The square of the frequency parameter for the pulsitile flow, defined

as ρωR2/µ, typically lies within the range of 25 − 35, and hence may ordinarily be too high for

a fully developed state to be approached at any point of the cycle. However, Doppler ultrasound

velocimeter measurements, performed on healthy human subjects, as reported in [84], confirm that a

parabolic profile is maintained over approximately two-thirds of the cardiac cycle, with a reasonable

steady forward flow throughout this period (hence a steady state approximation being justifiable as

a first approximation).

At both outlets, a zero gradient for all velocity components has been assumed. The bulk pressure

correction algorithm, described in Section 3.6.1, has been employed in order to satisfy global mass

conservation. Since there are two outlets, it is necessary to specify the flow ratio through the external

to internal carotid arteries a priori. In reality, such a ratio is clearly established naturally from the

presence of any downstream flow restrictions. However, since such restrictions are not included in

the computational domain, the ratio must be set here. A ratio of 70 : 30 through the internal and

external arteries respectively is used, as this is typical of a healthy human [84].

The geometry considered here is as close as is possible to that considered experimentally by

Bharadvaj et. al., [80] (note there is some ambiguity in the precise geometry in [80], so an exact

replica could bot be attained). In [80], a representative average bifurcation has been generated

from Fifty-Seven angiograms of 22 adult human subjects, supplemented by 67 angiograms from 50

children. Ideally, adult-only data would have been used, however, insufficient data was available

from disease free adults. Data from diseased subjects was not used due to the difficulties in identi-

fying where healthy tissue terminated, and diseased tissue was present, hence such datasets did not

contribute to any of the measurements, including those away from the diseased area.

Since the angiograms are two-dimensional, certain assumptions are required in order to generate

a three dimensional geometry. The first assumption employed in [80] is that the cross section of all

three arteries (i.e. the common, interior and exterior arteries) are circular. The second assumption

employed is that all three arteries lie in the same plane. That is, the axis of revolution of all three

arteries are coplanar. Further assumptions have been made relating to the quality and validity of

the angiogram data. Namely, that the carotid artery lies parallel to the longitudinal axis of the

neck, and hence the plane of the angiogram (which is ensured to be parallel to longitudinal axis of

the neck) is the same as that of the carotid artery. Finally, it has been assumed that all regions of

275

a given angiogram are magnified equally [80].

Due to the different dimensions involved in the arteries from different people (particularly the

differences in size between adult and child arteries), all data was scaled to yield a unit diameter for

the common carotid artery upstream of the bifurcation. All measurements were then taken with

this scale factor applied. Table 9.1 shows the average values of the measurements taken from the

angiogram data, with Figure 9.10 showing the location of each measurement.

9.3.3 Computational Grid

A total of five overset sub-grids have been used in the present study to delineate the overall compu-

tational domain. The common carotid artery and the internal carotid are both depicted via the use

of the same two grids, with the grids bending at the bifurcation in order to cover the internal carotid

portion of the domain. An O-grid covers the outer section of the artery, while a separate square-

section grid covers the core of the artery. The external carotid artery uses a further two grids, again

covering the interior and exterior of the artery via the use of a separate O-grid and square-section

grid. A final fifth overset sub-grid is then used at the junction between the external and common

carotid arteries. This grid is referred to as a collar grid. The reason this collar grid is required is

that the surface cells of the common artery wall will not conform to the shape presented by the

intersection between the external and common artery walls. Computational cells of the common

carotid wall at the intersection will, in general, be partly overlapping the external artery, and partly

non-overlapping. The application of computational boundary conditions in this case clearly poses a

problem; should they be treated as interpolation cells with the external artery used as a donor, or

should they be treated as part of the common carotid wall? The only valid answer is neither, and

instead the cells at the interface should be cut, leaving a hole. In order to fill this hole, a collar grid

is required, which is used to transfer information from the common carotid to the external artery.

This sub-grid is referred to as a collar grid since it wraps around the external artery like a collar.

An overview of the grids used is reported in Figure 9.11.

In previous overset computational studies considering a branching geometry, such as [85], collar

grids have not been used. Instead, grid arrangements such as that of Figure 9.12 are used. In this

case, one grid ‘sees’ a different intersection shape and area than that of the branching grids at the

same location, thereby assuring different solutions on the different grids at the same point in the

276

Location number shown in Figure 9.10 Mean dimensionless value
1 1.04
2 1.11
3 0.91
4 0.72
5 2.14
6 0.69
7 0.69
8 0.69
9 0.58
10 25.1◦

11 25.4◦

12 -0.30
13 1.00

Table 9.1: Table showing artery dimensions used.

overlap region. This seems unsatisfactory to the present author, and hence a collar grid is used to

resolve the issue.

Initial and refined computational grids comprising of approximately 350, 000 and 700, 000 cells

respectively have been employed. Grid sensitivity tests were carried out with flow conditions set to

the highest Reynolds number under consideration. The lower prominence of viscous forces at higher

Reynolds number generally leads to steeper velocity gradients (since the solution is not ‘smeared

out’ to the same extent as for a lower Reynolds number), and therefore would require a finer mesh

for grid independence. Grid dependence has been evaluated via analysis of the wall shear stress.

This criterion has been selected since it can be readily shown (via a Taylor’s series expansion) that

the one-sided difference approximation used in order to calculate the wall shear stress is first order

accurate in space, while the underlying flow solver is second order accurate. It would therefore be

expected that the wall shear stress be particularly sensitive to grid refinement. If the correct wall

shear stress is predicted, the velocity field is likely to be satisfactory. On the other hand, a broadly

satisfactory velocity field will not necessarily lead to a satisfactory wall shear stress prediction.

Figure 9.13 shows contours of the wall shear stress in the region of the bifurcation for the two

grid densities. It can be seen that, while there are small variations between the two solutions,

the magnitude of the variations is sufficiently small to assume grid independence by 700, 000 cells.

Figure 9.14 further quantifies the difference in the wall shear stress for the two grid resolutions by

plotting the wall shear stress along the wall connecting the common and internal carotid arteries

at the symmetry plane. It can be seen from the figure that there is virtually no difference between

277

the two solutions, thereby suggesting that the use of the initial grid is justifiable. The maximum

discrepancy between the two solutions is found to be around 2.3% of the theoretical Poiseuille value

for a pipe diameter and flow rate equal to that at the inlet.

In addition to the main computational grids on which the underlying flow solver operates, ad-

ditional zipped grids have been automatically generated in order to apply the bulk correction algo-

rithm. Figure 9.15 illustrates these surface grids for the inlet section and the internal artery outlet.

A similar zipped grid to that of the internal artery outlet is also generated for the external artery,

but is not presented here.

9.3.4 Results

The flow in the carotid bifurcation bears many similarities to the pipe bend flow considered earlier.

However, there are three very important differences that have a marked effect on the flow physics;

firstly the branching of common carotid artery (CCA) into the internal and external carotid arteries

(ICA and ECA respectively) causes the flow to split at an apex, and the flow division ratio can

have a marked effect on the flow field. Secondly, the arteries are of non-uniform diameter, thereby

inducing flow acceleration or deceleration. This is particularly significant at the entrance to the ICA

where a sinus is present (i.e. a region of relatively tight longitudinal curvature as the local arterial

diameter increases then decreased rapidly). Finally, and perhaps most significantly, there is flow

separation in the sinus across the range of Reynolds numbers considered.

Since the ICA branch of the bifurcation poses many more interesting flow features than the ECA,

primarily due to flow separation and the variable diameter posed by the sinus, the following analysis

shall focus almost exclusively on the ICA branch. The underlying flow physics in the ECA is much

the same as that of the ICA, but without the additional interesting features. Furthermore, the

experimental data reported in [84] typically is non-existent for the ECA branch of the bifurcation,

hence comparison is not possible. One notable exception to this is for the wall shear stress along

the common-external wall, which is available experimentally, and hence shall be discussed.

For use in the analysis that follows, several planes are defined. Planes through the Common

Carotid, taken perpendicular to the axial direction, are referred to as CC1-CC4. Similarly, planes

taken through the Sinus Section, again normal to the axial direction, are referred to SS1-SS6. The

location of each of these planes in defined in Figure 9.16. In addition, the left arterial wall in the

figure is referred to as the common-internal wall since it is common to both the CCA and the ICA;

278

similarly the right hand wall will be referred to as the common-external wall. In the ICA (the

left branch), the sinus region can be recognised by observing the expanding and then contracting

diameter of the artery.

Overview of main flow features

Figure 9.17 shows an overview of the velocity vectors in the symmetry plane for the Re = 400

case. The figure demonstrates many of the main flow features. Separation in the sinus is suggested

via the essentially zero velocity gradient near to the common-internal wall. While the qualitative

data presented in the figure may be insufficient to conclusively state the flow is separated, it will

be seen that this is indeed the case via analysis of the common-internal wall shear stress shortly.

Skewing of the axial velocity, away from the common-internal wall for the ICA, and away from the

common-external wall for the ECA, is also evident. This result is similar to that of the pipe bend

flow considered earlier and indeed the secondary flow plays a major role in such skewing. In the

figure, both computed and experimentally obtained vectors are shown. It can be seen that there is

generally a good qualitative agreement between the two sets of results. The axial velocity in the

symmetry plane is also illustrated in Figure 9.18 via the use of coloured contours.

An overview of the secondary flow at planes through the sinus section is presented in Figure

9.19. The figure also provides an overview of the pressure field in the symmetry plane. From the

figure it can be seen that at section SS1, located at the entrance to the ICA’s sinus, there is a strong

secondary flow with features very similar to those found for the flow through a pipe subjected to

a bend (Section 9.2). The flow is directed around the circumference of the artery towards the low

pressure region located on the inner side of the bend, while a cross flow in the opposite direction

along the symmetry plane is established in order to balance the former. In the carotid bifurcation

flow however, in contrast to the 90◦ bend flow, this effect is augmented by the fact that there is

a stagnation point at the apex where the internal and external arteries meet. The result is a high

pressure gradient and a particularly strong secondary flow, and consequential distortion of the axial

velocity, with skewing towards the apex evident. Also, due to the longitudinal curvature of the sinus,

there is a relatively high pressure region in the vicinity of the wall downstream of the maximum

diameter (near point C in the figure), thereby further affecting the secondary flow.

It is worth noting that the separation region in the sinus is not a closed region of recirculation

(fluid is not trapped here). 3D effects play an important role in transporting fresh fluid into the

279

separation region as follows. The circumferential secondary flow around the perimeter of the arterial

wall (generated via much the same mechanisms as for the pipe bend flow) acts to transfer fresh fluid

into the separation region. This fluid then experiences a negative axial acceleration associated with

the adverse axial pressure gradient in the separation region (the reasons for the presence of this

adverse pressure gradient will be discussed presently). The secondary flow along the symmetry

plane then acts to transport this reversed flow back towards the centre of the ICA, where viscous

interaction with the adjacent fluid retards the reversed flow and subsequently carries it back along a

positive axial direction towards the outlet (i.e. entrainment of the fluid in the separation region by

the axial flow occurs). Figure 9.20 illustrates this effect. This 3D dominated result is very important.

Without it, recirculating fluid would be trapped in the separation region. The ability of the fluid to

transport fatty deposits away from the sinus wall would therefore be impaired, and evolution would

likely have been forced to take a different path.

Axial flow

Figure 9.21 shows profiles of the axial velocity through the CCA. The profile locations are defined

by the intersection of the symmetry plane with planes CC1 to CC4, and are indicated in the figure

(see also Figure 9.16 where the plane locations have been defined). It can be seen from the figure

that the first two profiles show an essentially parabolic shape, indicative of a fully developed laminar

flow. This suggests little upstream influence of the bifurcation, particularly given plane CC2 is only

half an inlet diameter from the start of the bifurcation. By plane CC3, located at the start of

the bifurcation, some evidence of the onset of flow separation along the common-internal wall can

be seen. The axial velocity in the vicinity of this wall is slightly decelerated relative to the CC2

profile (note the common-internal wall is located at r/D = −0.5). It can also be seen that the axial

velocity in the vicinity of the common-external wall is decelerated in the experimental results. This

however is not captured in the computation. There is also some discrepancy in the peak value of the

axial velocity at CC3, which is consistent with the former discrepancy. Mass conservation dictates

that the peak velocity for the experimental data should be higher since the near wall flow velocity

is reduced. In any case, the discrepancies are minor, and might be attributable to geometrical

ambiguity: The discrepancy suggests that the precise geometrical curvature at the plane CC3, along

the common-external wall, has not been accurately depicted. Based on the result seen for CC3, the

experimental ECA appears to branch off slightly further upstream than that of the computational

280

geometry. The highly complex geometry of the bifurcation is not fully specified in [80], and hence

some assumptions and approximations have necessarily been made. This is particularly true for the

wall curvature in the vicinity of the bifurcation’s origin, where the three arteries merge, and hence

the ambiguity is particularly prominent at CC3. Experimental error may also play some role in the

discrepancy. While computational error may also play a role, this is not expected to be significant.

Truncation error has been effectively managed via the grid dependence tests reported earlier, and

since the flow is laminar, confidence in the computational accuracy is justifiable. In any case, the

differences are minor.

By CC4, separation is confirmed along the common-internal wall (since the axial velocity in the

vicinity of the wall is seen to be negative). The peak flow at CC4 is decelerated slightly relative to

CC3, since the sectional area of the former is increased due to the bifurcation.

It can be seen from Figure 9.21 that the agreement between the computed profiles and the

experimental data is very good, with the possible exception of CC3 where some minor discrepancies

have been discussed. The good agreement at CC4 is particularly encouraging since this suggests

that the correct separation point on the common-internal wall has been captured. It will be seen

that the location of the separation point has a major affect on downstream flow development.

Figure 9.22 shows profiles of the axial velocity at the intersection of the symmetry plane with

planes SS1-SS6. The Reynolds number is again equal to 400. For all the profiles, skewing of the

axial velocity away from the common-internal wall is apparent. This is due to the transport of axial

momentum by the secondary flow. Between SS1 and SS3 this effect seems to have increased, which

is due to the augmentation of the secondary flow between these planes, caused by the curvature of

the sinus wall. The curvature of the separation region also plays a role since this alters the effective

geometry.

It can also be seen from Figure 9.22 that between planes SS1 and SS3, there is some reversed

flow in the vicinity of the common-internal wall. By SS4, reattachment is observed, indicated by

a positive axial flow across the diameter of the artery. Downstream of SS4, there is rapid flow

acceleration over the left portion of the artery which is due to the favorable axial pressure gradient

(generated via a combination of high pressure at the reattachment point, in addition to the rapid

pressure drop associated with the arterial diameter contraction prior to conclusion of the sinus, as

will be discussed presently).

The agreement between computation and experiment is generally good. The largest discrepancy

281

appears to be at plane SS5, over the left portion of the artery. Plane SS5 is located in the region

of rapid flow acceleration downstream of the reattachment point. The precise location of the reat-

tachment point therefore plays a significant role in the axial velocity here. Since the reattachment

point is particularly sensitive to the geometrical wall curvature, accurate predictions of the velocity

profile in the vicinity of flow reattachment cannot be expected unless a precise replica of the geom-

etry is attained. It is possible that reattachment is predicted slightly too early in the computation,

hence the computed axial velocity may have had spurious additional recovery time, explaining the

over-prediction. Another possibility presents itself by noting that the axial velocity at SS5 is over-

predicted over the entire diameter, suggesting that a more likely reason for the discrepancy is due to

an insufficient arterial diameter at this plane (while this is suggested, it is not confirmed since the

axial flow could have been underestimated at locations away from the symmetry plane). The axial

velocity would necessarily be accelerated in this scenario in order to satisfy mass conservation. The

arterial diameter is specified in [80] at locations 0.92D upstream of SS5, and 0.31D downstream of

the plane. Between these specified diameters, interpolation is necessary and hence the diameter at

SS5 is likely to be slightly different to that of the experiment (a cubic spline interpolation has been

used in the present study). Again, it is seen that geometrical ambiguity is likely to be the reason

behind any discrepancy. It should be emphasised however that the discrepancy is fairly minor.

Figure 9.23 shows profiles of the axial velocity, taken normal to the symmetry plane, at SS1-SS6,

through the artery’s diameter. The flow Reynolds number, based on inlet conditions, is equal to

800. Note that the flow Reynolds number is different between figures 9.22 and 9.23 due to the

availability of experimental data, however the general flow features are the same. Here it can be

seen that there is a peak in the axial velocity at the top and bottom of the artery for all profiles

but SS1. This feature is generated via the transport of axial momentum by the secondary flow.

Similar features have been observed for the pipe bend flow. The agreement between computation

and experiment near to the arterial wall is good, suggesting that the secondary flow is accurately

predicted. Around the centre of the artery however, the discrepancy is, in some cases, significant.

This is particularly true at SS1 and SS2, where the axial flow at the centre is badly underestimated

(by around 25%). The axial velocity has been seen to be shifted away from the common-internal

wall due to the effective obstruction presented by the separated flow and due to the secondary flow

momentum transport. Due to the sharp cross-stream velocity gradient in this region (in the direction

parallel to the symmetry plane), a small discrepancy in the shape of the recirculation region could

282

have a large affect on the axial velocity through the vertical profiles considered, since the effective

blockage by the reversed flow will be different. This is supported somewhat via the previous result

of Figure 9.22 in which the separation region is seen to extend slightly too far towards the centre of

the sinus relative to the experimental data, and hence would shift the axial momentum yet further

from the centre of the artery where the present profile is taken (this comparison is valid despite

the difference in Reynolds number between figures 9.22 and 9.23 since the qualitative flow features

remain the same).

At planes SS3-SS5 in Figure 9.23, it can be seen that there is now a slight over-prediction in

the centreline velocity. For these profiles at least, the discrepancy is fairly minor. Again, the slight

discrepancy is likely to be due to the predicted shape of the separation region, which is strongly

influenced by the wall curvature. Figure 9.22 gives some suggestion that the separation region at

SS3 does not extend sufficiently far towards the centre of the artery. This is consistent with the

over-prediction observed at this plane for the vertical profile under consideration in Figure 9.23.

Secondary flow

Figure 9.24 shows profiles of the secondary velocity component that is parallel to the symmetry

plane, at sections through the internal carotid artery. The Reynolds number in this instance is equal

to 800. It can be seen that for sections SS1 and SS2, for the centre profile through the diameter, the

secondary flow bears much the same flow features as for the pipe bend (the mechanism by which

this secondary flow is generated has been discussed for the 90◦ bend pipe flow in Section 9.2). It

can be seen that for the leftmost profiles of SS1 and SS2, the secondary flow is diminished. This is

due to separation of the secondary flow as the fluid is directed into the core of the separation region

due to the low pressure that is present there.

At planes SS4 to SS6, it can be seen that there is acceleration of the secondary flow close to

the symmetry plane for the centre and left profiles. Due to the axial curvature of the sinus, a low

pressure region is present at its centre, and a relatively high pressure region is present around the

wall circumference. This pressure gradient accelerates the secondary flow towards the centre of the

pipe, thereby enhancing the cross-flow component for the left profile and centre profiles, while also

causing the cross-flow for the right profile to be in the opposite direction to that which would be

expected for a uniform diameter pipe.

The agreement between the computed results and the experimental data is generally quite good.

283

Any small discrepancies again are likely to be attributable to small differences in the specific geometry

of the bifurcation. Experimental accuracy of the secondary flow is also questionable, particularly

given the experimental data displays asymmetry where there should be a symmetrical solution (see

for example the plane SS1 in Figure 9.24 where there is secondary flow near the top wall, but none

at the bottom wall).

Wall shear stress

As the Reynolds number is increased from Re = 400 to Re = 1200 inertial effects become more

prominent and the flow resists following the curvature of the geometry to a greater extent. The effect

of the increase in Reynolds number is particularly noticeable in the internal carotid artery’s sinus

region. Here, the curvature provided by the bend at the bifurcation, plus the additional curvature

provided by the sinus wall, is sufficient for flow separation to ensue. The size of the recirculation

region and the strength of the back-flow both increase with increasing Reynolds number. This effect

can be realised via analysis of the wall shear stress.

Figures 9.25 and 9.26 show the wall shear stress along the common-internal carotid wall for

Re = 400 and Re = 1200 respectively. These figures demonstrate a good agreement between

computation and experiment for the wall shear stress at the symmetry plane of the common-internal

wall. Figure 9.27 shows the same plots again superimposed, with the addition of a Re = 800 case (for

which experimental data was not available), in order to facilitate a direct comparison. It can be seen

from this latter figure that around −1 ≤ y/D ≤ −0.25 there is a moderate increase in the wall shear

stress. This is due to a combination of two factors. Firstly, only 30% of the flow is directed through

the ECA. The axial flow through the CCA therefore experiences an adverse pressure gradient on

the ECA side, so as to ensure the correct flow split at the bifurcation. A slight skewing of the axial

velocity towards the common-internal wall therefore results, contributing toward the increase in the

wall shear stress that is observed. In addition, the near wall flow is accelerated upstream of the bend

due to the low pressure region associated with the bend’s curvature. This flow acceleration close to

the wall also contributes to the local peak in wall shear stress.

Immediately following the local peak in wall shear stress just described, the wall curvature due

to the bifurcation commences, and the wall shear stress along the common-internal wall is seen to

decrease rapidly. This is due to the secondary flow associated with this curvature, causing fluid to

be transported along the symmetry plane towards the centre of the CCA. The result is a low velocity

284

gradient near the wall, and hence a low wall shear stress. This effect continues, and eventually flow

separation occurs, indicated by zero wall shear stress. It can be seen that the point of separation is

fairly consistent across the Reynolds number range. There is however a slight tendency for separation

to be postponed at lower Reynolds numbers, as would be expected due to the lower inertial affects.

At increasing Reynolds number the secondary flow is stronger, thereby enhancing the transport of

fluid away from the wall, causing separation to occur sooner.

At y/D ≈ 1.5 it can be seen that there is a significant negative peak in the wall shear stress for

the highest two Reynolds numbers under consideration. This is due to the reversed flow that occurs

in the separation region. As the sinus expands, the additional wall curvature the expansion provides

augments the secondary flow, causing additional fluid to be transported around its circumference,

into the separation region. This fluid, once deposited within the separation region, travels in the

negative axial direction due to the adverse pressure gradient that it is subjected to, thereby causing

the large negative peak in wall shear stress. Note that the adverse pressure gradient is associated

with the sharp streamline curvature at the reattachment point, as will be described in greater detail

presently. It can be seen that the Re = 400 case does not display the negative peak in wall shear

stress. This is due to the fact that the adverse pressure gradient associated with reattachment is

significantly lower for the Re = 400 case (the reason for this will also be discussed).

Downstream of the minimum wall shear stress point, flow acceleration occurs due to the sinus

contraction, causing steeper near-wall velocity gradients, and hence the rapid increase in the wall

shear stress that is seen at all three Reynolds numbers by y/D ≈ 1.5.

The flow a short distance prior to conclusion of the sinus and following reattachment follows

the curvature of the wall, and hence has a cross-flow component directed towards the centre of

the artery. The inertia of the fluid causes this cross-flow velocity component to remain for a short

distance downstream of the end of the sinus, where a straight section is resumed, explaining the

reduction in wall shear stress that is observed downstream of y/D ≈ 2.5.

At around y/D = 4, it can be seen that the wall shear stress starts to increase, as viscosity

starts to dissipate the secondary flow, and hence the transport of axial momentum away from the

common-internal wall is reduced.

Figure 9.28 shows the wall shear stress at the symmetry plane along the common-external wall.

Here it can be seen that there is a local minima in the wall shear stress immediately upstream

of the junction between the CCA and the ECA, at around y/D ≈ −0.3. This again is probably

285

due to the low flow rate through the ECA, causing a high pressure on the ECA side of the CCA,

leading to a shift in the peak velocity towards the common-internal wall (and hence away from the

common-external wall currently under consideration). At the junction (around y/D ≈ −0.2), it can

be seen that there is a local maxima in the wall stress which is associated with the fluid’s acceleration

around the sharp corner. In the ECA, it can be seen that the wall shear stress reaches a minimum

at y/D ≈ 0.5. The low wall shear stress here is associated with the secondary flow that acts to

shift the axial flow away from the common-external wall. Downstream of y/D ≈ 0.5, the wall shear

stress starts to increase due to the dissipation of secondary flow via the action of viscosity. The axial

velocity peak therefore starts to shift from the opposite wall towards the common-external wall.

It can be seen that the agreement between the computation and experimental data is not par-

ticularly satisfactory for the wall shear stress along the common-external wall. While the location

of the minimum wall shear stress seems to have been captured, the rate of recovery following this

minimum is over-predicted in the computation. The reason for this discrepancy is almost certainly

due to differences in the geometry between computation and experiment. There is significant ambi-

guity in the geometry of the ECA since the primary focus of the study is around the sinus region.

Specifically, while three diameters are specified via dimensions 7, 8 and 9 in Figure 9.10 and Table

9.1, only the axial location of dimension 7 can be inferred (being at the entrance to the ECA), while

the others have been estimated from the schematic geometry figure provided.

Pressure on the common-internal wall

Figure 9.29 shows the pressure coefficient along the common-internal wall at the symmetry plane

for the three Reynolds numbers under consideration. Note that the reference pressure location has

been taken as the point on the common-internal wall, at the symmetry plane, where the curvature

due to the bifurcation begins, hence all three Reynolds number solutions show the same pressure

at this point. It can be seen from the figure that around y/D < −1 there is a constant negative

pressure gradient that is associated with driving the fully developed flow against frictional losses.

The gradient of this pressure drop decreases with increasing Reynolds number since viscous losses

become less significant at higher Reynolds number. A short distance upstream of the start of the

bifurcation, at y/D ≈ −0.5, it can be seen that for all three Reynolds numbers, the rate of pressure

decrease is enhanced as the upstream influence of the bifurcation curvature has an effect. By y/D ≈ 0

however, it can be seen that the pressure starts to increase as the flow is decelerated due to the

286

increased cross sectional area associated with the bifurcation. It is this adverse pressure gradient

that causes the separation seen in Figure 9.27.

It can be seen that a short distance downstream of the maximum sinus diameter there is a peak

in the pressure associated with flow reattachment. It is this peak that is largely responsible for

the reversed flow in the separation region. The peak pressure here is due to the sharp streamline

curvature at the reattachment point: Fluid at the inlet of the CCA, near the upper wall (e.g.

α ≈ 0.25π, r/D ≈ 0.4), is eventually transported via the secondary flow around the circumference of

the sinus wall towards the reattachment point. Before reattachment, this fluid is decelerated rapidly

in the axial direction via viscous interaction with the reversed flow in the separation region. As a

result, at the reattachment point the transported fluid has no axial component of velocity, and must

therefore turn with a particularly small radius of curvature as the flow around the circumference is

redirected back along the symmetry plane via the secondary flow. This sharp streamline curvature

is responsible for the peak in pressure observed, with the latter being required in order to balance

the centrifugal force associated with the curvature. Note that this effect is very small at the lowest

Reynolds number considered since in this case the secondary flow is substantially weaker, and hence

the centrifugal force associated with the streamline curvature is substantially lower.

Yet further downstream of the reattachment point, there is a rapid decrease in the pressure

which is due to the flow acceleration caused by the decrease in cross sectional area, in addition

to the pressure recovery from the peak just described. This negative pressure gradient continues

until the outlet, so as to drive the fluid against frictional losses. The negative pressure gradient

downstream of reattachment is seen to be substantially steeper than that of the CCA. The effective

Reynolds number of the flow through the ICA is less that half that of the CCA (based on 70% of the

inlet bulk velocity and the final arterial diameter of 0.69D), hence viscous losses are more significant.

The large peak in the pressure on the common-internal wall that has just been described, a

short distance downstream of the maximum sinus diameter, is also responsible for the accelerated

secondary flow along the symmetry plane that was observed earlier (shown in Figure 9.24) for SS4-

SS6, since there is now a strong pressure gradient acting towards the centre of the artery. It also

contributes to the rapid flow acceleration following reattachment that was reported in Figure 9.22.

287

9.3.5 Conclusion

The flow through a generic carotid bifurcation geometry has been computed. It has been seen that

the computed results are generally satisfactory. Since the flow is laminar, and grid independence has

been confirmed, computational error is not expected to be at the root of any discrepancy. Instead,

geometrical ambiguity is likely to be the main cause of such discrepancies.

The overset grid method has proven very useful in this case since a block-structured grid would

be extremely difficult to generate. The use of a collar grid has been demonstrated to work well

in facilitating information transfer at the intersection of two wall bounded domains, where the

hole cutting algorithm would otherwise be unable to apply boundary conditions for cells at the

intersection. The grid zipping algorithm, originally devised for computing sectional lift coefficients

for overset wing arrangements, has been applied in a novel way in order to enforce global mass

conservation. This has been shown to work well, and can deal with multiple outlets giving the

correct flow split at the bifurcation. The MFBI algorithm has also been shown to perform well for

the present case, allowing grid independence to be attained by 350, 000 cells. When using a linear

interpolation, evidence of grid dependence was observed.

9.4 Figures

288

Figure 9.1: Computational mesh

289

2
1.85
1.7
1.55
1.4
1.25
1.1
0.95
0.8
0.65
0.5
0.35
0.2
0.05
-0.1
-0.25

1

ustreamwise/Ubulk

Figure 9.2: Contours of axial velocity. Vectors in symmetry plane.

290

(r-r
i
)/(r

o
-r

i
)

U
a
x
i
a
l
/
U
b
u
l
k

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

!"#$%

!&"$&

!'($)

!*

Figure 9.3: Axial velocity at the symmetry plane at four streamwise locations.

291

θ = 0◦

θ = 4.6◦

θ = 11.7◦

θ = 23.4◦

θ = 39.8◦

θ = 58.5◦

θ = 81.9◦

Figure 9.4: Secondary vectors with contours coloured by axial velocity. Inner side of pipe to
left of each sub-figure.

292

Figure 9.5: Secondary vectors with contours coloured by axial velocity in the plane θ = 58.5.
For legend see page 292. Inner side of pipe to left of figure.

293

Figure 9.6: Secondary vectors with contours coloured by axial velocity in the plane θ = 81.9.
For legend see page 292. Inner side of pipe to left of figure.

294

X

Y

Z

P/(0.5 Ubulk
2)

0.2
0.075
-0.05
-0.175
-0.3
-0.425
-0.55
-0.675
-0.8
-0.925
-1.05
-1.175
-1.3
-1.425
-1.55
-1.675
-1.8

Figure 9.7: Pressure in the symmetry plane.

295

θ = 0◦

θ = 4.6◦

θ = 11.7◦

θ = 23.4◦

θ = 39.8◦

θ = 58.5◦

θ = 81.9◦

Figure 9.8: Profiles of secondary flow x-component. Distance between two adjacent x-planes
at which the profiles are given correspond to a velocity of 0.6Uin. Inner side of pipe to left of

each sub-figure.

296

Figure 9.9: Arteries in a human neck. Common carotid artery (labelled common caroti. in
the figure) bifurcates into the internal and external carotid arteries.

297

Figure 9.10: The geometry used for the Carotid artery bifurcation. Table 9.1 shows the
values of the dimensions labeled 1− 13.

298

Figure 9.11: Meshes used.

299

Figure 9.12: Mesh used in [85] for the flow through a human aortic arch. Note the absence
of collar grids.

300

Figure 9.13: Grid sensitivity test showing contours of wall shear stress on bifurcation wall.

301

Figure 9.14: Grid sensitivity test showing wall shear stress at the symmetry plane along the
common-internal arterial wall (i.e. at α = π) for the two grid resolutions under consideration.

302

Figure 9.15: Sample of zipped grids used in order to integrate mass fluxes over overset grids.
Quadrilaterals are taken from underlying structured grids, while triangular cells have been

added by zipper algorithm. Inlet zipped grid (above) and internal carotid artery zipped grid
(below).

303

Figure 9.16: View at symmetry plane, showing the locations of planes used in the analysis.

304

Figure 9.17: Velocity vectors in the symmetry plane. Computed results (left) are compared
with experimental data (right).

305

Figure 9.18: Contours of axial velocity. Note that contours are not displayed in the region of
the intersection due to the fact an axial direction cannot be defined. Re = 800

306

!"

Figure 9.19: Secondary flow vectors and contours of axial velocity at SS1, SS3 and SS6 (left).
Contours of the pressure, with the locations of planes SS1, SS3 and SS6 indicated (right).

307

Figure 9.20: Flow streamlines showing helical vortices and flow separation

308

C
C

1 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

0

0.
51

1.
52

2.
5

C
C

3 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

0

0.
51

1.
52

2.
5

C
C

2 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

0

0.
51

1.
52

2.
5

C
C

4

F
ig

u
re

9
.2

1
:

A
x
ia

l
v
e
lo

c
it

y
p
ro

fi
le

s
a
t

li
n
e
s

d
e
fi
n
e
d

b
y

th
e

in
te

rs
e
c
ti

o
n

o
f

th
e

sy
m

m
e
tr

y
p
la

n
e

w
it

h
p
la

n
e
s

C
C

1
-4

.

309

S
S

1 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

-0
.50

0.
51

1.
52

2.
5

S
S

4 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

-0
.50

0.
51

1.
52

2.
5

S
S

2 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

-0
.50

0.
51

1.
52

2.
5

S
S

5 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

-0
.50

0.
51

1.
52

2.
5

S
S

3 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

-0
.50

0.
51

1.
52

2.
5

S
S

6 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

-0
.50

0.
51

1.
52

2.
5

F
ig

u
re

9
.2

2
:

A
x
ia

l
v
e
lo

c
it

y
p
ro

fi
le

s
a
t

li
n
e
s

d
e
fi
n
e
d

b
y

th
e

in
te

rs
e
c
ti

o
n

o
f

th
e

sy
m

m
e
tr

y
p
la

n
e

w
it

h
p
la

n
e
s

S
S
1
-6

.

310

S
S

1 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

0

0.
51

1.
52

S
S

4 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

0

0.
51

1.
52

S
S

2 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

0

0.
51

1.
52

S
S

5 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

0

0.
51

1.
52

S
S

3 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

0

0.
51

1.
52

S
S

6 r
/
D

Uaxial/Ubulk

-0
.6

-0
.4

-0
.2

0
0.
2

0.
4

0.
6

0

0.
51

1.
52

F
ig

u
re

9
.2

3
:

A
x
ia

l
v
e
lo

c
it

y
p
ro

fi
le

s
ta

k
e
n

n
o
rm

a
l

to
sy

m
m

e
tr

y
p
la

n
e

ta
k
e
n

th
ro

u
g
h

th
e

d
ia

m
e
te

r,
a
t

p
la

n
e
s

S
S
1
-6

.
R

e
=

8
0
0
.

311

S
S

1

S
S

4

S
S

2

S
S

5

S
S

3

S
S

6

F
ig

u
re

9
.2

4
:

T
a
n
g
e
n
ti

a
l

v
e
lo

c
it

y
p
ro

fi
le

s
(i

.e
.

v
e
lo

c
it

y
c
o
m

p
o
n
e
n
t

p
a
ra

ll
e
l

to
th

e
sy

m
m

e
tr

y
p
la

n
e
)

a
t

p
ro

fi
le

lo
c
a
ti

o
n
s

ta
k
e
n

n
o
rm

a
l

to
th

e
sy

m
m

e
tr

y
p
la

n
e
,

o
n

S
S
1
-6

.
R

e
=

8
0
0
.

312

Figure 9.25: Wall shear stress along the common-internal wall. Stress is normalised by the
uniform value for the CCA, upstream of the influence of the bifurcation. Re = 400

313

Figure 9.26: Wall shear stress along the common-internal wall. Stress is normalised by the
uniform value for the CCA, upstream of the influence of the bifurcation. Re = 1200

314

Figure 9.27: Wall shear stress along the common-internal wall at the symmetry plane,
normalised by the uniform value for the CCA.

315

Figure 9.28: Wall shear stress along the common-external wall at the symmetry plane.

316

Figure 9.29: Pressure along the common-internal wall at the symmetry plane.

317

Chapter 10

Wing-body junction flow

The figures referred to within this chapter can be found from Page 333.

10.1 Introduction

The turbulent flow in the vicinity of a wing-body junction is particularly complex. Three-dimensional

effects induce secondary flow features, typically causing the formation of vortical structures. Trans-

port of momentum by these vortices significantly affects the flow. Turbulence also plays a major

role, with high normal stress anisotropy, strong streamline curvature and an adverse pressure gradi-

ent upstream of the leading edge stagnation point all making the flow particularly challenging for a

turbulence model to deal with.

The overset grid method is useful yet again for meshing the domain of a wing body junction.

Where the wing comprises of multiple components such as flaps and slats, all of the benefits pre-

viously outlined for a multi-element airfoil apply (Chapter 8). If additional features are present at

spanwise locations on the wing, such as engine nacelles, clearly the overset method would be much

better equipped to deal with such a geometry than a block structured grid, with the latter being

impractical. Furthermore, if the body has streamwise or cross-stream curvature, as is typically the

case for a wing-fuselage junction, a block structured grid would be particularly challenging. If the

wing tip is rounded, or has other geometrical complexities, this is also true. The overset grid method

therefore shows great potential for a generic wing-body geometry, or for very complex junction ge-

ometries such the flow over a space shuttle [86] or a full aircraft configuration [87, 88]. Figure 10.1

318

shows sample grids for a junction considering some of these features. These grids were used for an

early developmental stage of the hole-cutting algorithm. Although no flow simulations have been

conducted with these grids, they do demonstrate the potential of the method.

The geometry used for the flow calculation presented in this Chapter is somewhat simpler than

that of Figure 10.1; sufficiently simple for a block-structured arrangement to be used without too

much difficulty. The specific geometry will be described presently. A simple geometry has been used

due to the wealth of high quality experimental data that is available for the case [89, 90, 91, 92].

However, it will be seen that even for the simple geometry considered, the overset method pro-

vides significant advantages over other griding techniques. The extension from the simple geometry

considered to a more complex one is reasonably straightforward.

10.2 Geometry and computational grids

The geometry considered is the same as that considered experimentally in References [89, 90, 91, 92].

The wing section comprises of a semi-elliptical nose section divided along its minor axis, with a NACA

0020 tail section joined at maximum thickness to the aforementioned ellipse. The elliptical nose has

a major to minor axis ratio equal to 3/2. The section of the wing is uniform over its entire span.

One end of the wing is attached to a flat plate, while the other end is free. Figure 10.2 illustrates

this geometry. Also shown in the figure is the coordinate system adopted. One can see that a right

hand coordinate system is used with the origin located at the intersection of the wing’s leading edge

with the lower wall. The streamwise direction is aligned with the x axis. The y and z axes are in

the vertical and cross-stream directions respectively.

Figure 10.3 shows the computational grids used. It can be seen from the figure that a total of

three overset grids have been used. A Cartesian background grid (red) covers the majority of the

domain, a body-fitted curvilinear grid (green) used to depict the near-wing region, while a second

Cartesian grid (blue) has been used to provide the additional grid resolution that is required to

satisfactorily resolve the wake and vortex structure. This overset grid arrangement demonstrates

another very useful feature of the overset method. Initial computations were carried out without

the presence of the blue wake refinement grid. Once it was realised that there may be insufficient

grid resolution in this region, the grid was added afterwards with the underlying solution on the

background grid being interpolated onto the refined grid in order to provide a good initial solution

319

on this grid (prior to reinvoking the hole cutting algorithm to remove the now unnecessary cells

of the background grid). The solution on the refined grid therefore converges rapidly thanks to

its good initialisation. This is somewhat similar to adaptive mesh refinement that is available for

unstructured grids, but here the capability is effectively brought to a structured solver. It can be

envisaged that such a feature would be very useful for compressible flows where the location of shocks

may not be known a priori. Further, while the wing considered here is symmetric, and hence the

wake location is known a priori, this is not necessarily the case for a lifting wing since the downwash

acts to displace the wake. The overset grids outlined here would therefore be useful in this case

since the wake refinement region could simply be shifted to the appropriate location before being

reinitialised via interpolation from the underlying cells at the new location. Since the solution shows

low spatial variation outside of the wake for all primitive variables, there is little need to attempt to

match the grid cell size at the interface; significant heterogeneity will be tolerated.

Another major advantage of the overset mesh over other meshing techniques is that the vast

majority of the domain is filled with Cartesian grids, and hence much of the geometric data that

would otherwise be required is not stored, thereby reducing the memory footprint. By tagging

the Cartesian grids as curvilinear (which is valid since the latter is a generalisation of the former),

around 18% increase in memory usage was found, with no difference to the solution (other than the

negligible differences due to numerical round-off errors). CPU time is also increased by around 5%.

Further optimisation of the present code may yield yet further improvement.

Initial computational grids used around 400, 000 cells, while a refined mesh consisting of 600, 000

cells was used in order to investigate grid convergence. Figure 10.4 shows the result of this grid

sensitivity test, from which it can be seen that there is no appreciable difference in the surface

pressure for the two grid densities. Similar grid convergence is also observed for the profiles of mean

velocity.

Figure 10.5 shows the grids used for this geometry in a study compiled by Apsley and Leschziner,

[93]. Note the high aspect ratio cells that propogate out from the trailing edge which is avoided by

the more flexible gridding of the present study. In [93], around 330, 000 cells have been employed.

While fewer cells are used in [93], despite the off-body high aspect ratio cells that are avoided in the

present study, the near wall y+ is lower here than is reported in [93] (0.3 at the near-wall cell centre

for the approach flow boundary layer at the inlet for the present study, versus 0.5 in [93]). The near

wall y+ is below unity for all near-wall cell-centres in the present study.

320

10.3 Boundary conditions

In the experiment the approaching lower wall boundary layer is tripped by means of a step at

x/T − 21.0. Profiles of u, u′2 and w′2 within the partially developed turbulent boundary layer are

provided at x/T = −18.24 [89]. The computational inlet has therefore been placed at this location.

The non-measured mean velocity components (i.e. v and w) have been assumed to be zero at the

inlet, which is reasonable for a 2D boundary layer. A log-law empirical approximation has been

used to estimate v′2 as 0.4u′2 which is used in order to fix the inlet profile of the turbulent kinetic

energy. A separate 1D channel flow simulation with fixed mean velocity and turbulent kinetic energy

fields (equal to those determined from the experimentally provided data), has been used in order to

determine an inlet profile for the length-scale determining variable, ε.

The wing surface and the lower wall (i.e. the body) both have a no-slip condition applied. The

upper tunnel wall and side walls were modelled as slip (zero shear) walls in order to eliminate the

need to resolve the tunnel wall boundary layers, while still including their blocking effect within the

simulations. These walls were placed at z/T = 6.3 for the side wall (i.e. the wall parallel to the

symmetry plane), and at y/T = 3 for the upper tunnel wall. In the experiment, a small gap was

left between the end of the wing and the upper tunnel wall. This was done in order to eliminate

the formation of secondary flows that would result from the interaction of the upper tunnel wall

boundary layer with the wing. Such secondary flow features were desired only as a result of the lower

wall boundary layer interaction, since otherwise the upper and lower secondary flow features may

interfere with one another, especially given the relatively short span of the wing. In the computations,

however, the need for such a gap has been eliminated since the upper wall has been modelled as

a slip wall and therefore no upper-wall boundary layer will be present. Note that the presence of

such a gap, if it were to be included in the computations, would significantly increase the domain

complexity for a block-structured arrangement. The overset method however would be able to deal

with such a domain topology with comparative ease. This work has however not been conducted

since it offers very little toward solution accuracy away from the upper wall, yet would require the

resolution of an additional boundary layer, thereby significantly increasing computational costs.

Since the geometry and boundary conditions are symmetrical, the computational domain is se-

lected to cover only half the tunnel, with the axis of symmetry lying on the wing’s cord. Symmetry

boundary conditions were used for all boundary cell faces lying on the symmetry plane. The sym-

321

metry condition is implemented in the same way as for the zero shear wall considered earlier. Zero

gradient conditions are applied for all primitive variables, while the wall normal component is set to

zero.

The outlet has been placed sufficiently far from the wing so as to ensure it has no effect on the

solution in the vicinity of the wing. A location of x/T = 25 has been found to be sufficient. Although

the vortex is not fully dissipated by this location (and hence the use of zero gradient conditions at

the outlet is strictly incorrect), the error that this induces does not propagate far upstream due to

the directional nature of the convection process. To place the outlet far enough downstream for the

vortex flow to have been dissipated by viscosity, leaving a 2D boundary layer, would be prohibitively

expensive from a computational resource viewpoint.

10.4 Numerical model

The QUICK convection scheme is used for all velocity components, while the UMIST scheme is used

for the turbulence transport variables (Section 3.3.2). The low Reynolds Launder-Sharma model

is again used for turbulence closure (Chapter 4). A correction to the length scale is applied. The

differential form of length scale correction described in Chapter 4 and [51] is employed. Inter-grid

interpolation is conducted via MFBI interpolation.

10.5 Results and discussion

An overview of the solution is reported in Figures 10.6 and 10.7. The former figure considers pressure

contours on the wing and groundplate walls, as well as secondary velocity vectors within the wake

and vectors in the symmetry plane upstream of the leading edge. The latter figure illustrates the

structure of the vortex via an iso-surface of the Q-criterion, [94], (Q = 0.25[(∂ui/∂xj − ∂uj/∂xi)2−

(∂ui/∂xj + ∂uj/∂xi)
2]; a Q = 0.5 surface is shown). It can be seen from the figures that the flow

is characterised by prominent secondary flow features. The vortex structure can be seen to wrap

around the contour of the wing and is convected well downstream of the trailing edge before it is

eventually dissipated via the action of viscosity. The overall shape of this vortex structure somewhat

resembles a horseshoe, and hence is referred to as a horseshoe vortex.

Further insight into the overall flow field can be gained via Figures 10.8 and 10.9, which show,

322

respectively, contours of the streamwise velocity component and turbulent kinetic energy in xz-planes

at two spanwise locations; one above the vortex structure and the other through the wake vortex.

It can be seen from Figure 10.8 that the wake is much shorter close to the groundplate than away

from it. This is due to the vertical fluid flow in the vortex (i.e. the flow normal to the ‘body’). Due

to the rotation sense of the vortex, close to the symmetry plane the vertical flow acts to transfer

high momentum fluid from the free stream downwards towards the lower wall, thereby ‘filling’ the

wake. The opposite effect occurs on the other side of the vortex structure (away from the symmetry

plane), where the vertical flow acts to transfer low momentum fluid from the lower wall’s boundary

layer upwards towards the free-stream, causing the relatively low streamwise velocity labelled in the

figure.

In Figure 10.9 it can be seen that the turbulence energy is generally higher close to the ground-

plate than away from it, as is expected due to the mean shear caused by the lower wall. It can also be

seen that the high mean shear generated due to the vortex structure contributes to the production

of turbulence kinetic energy.

Flow streamlines above the vortex structure are presented in Figure 10.10. Notice the strong

streamline curvature at the leading edge and also (but to a lesser extent) towards the trailing edge. It

will be seen presently that this streamline curvature plays an important role in the vortex formation.

10.5.1 Pressure field results

Figure 10.11 shows contours of the pressure coefficient on the groundplate in the vicinity of the

wing, with experimental comparison. It can be seen from the figure that a reasonable agreement is

observed between the computation and experiment. The high pressure region at the leading edge of

the wing is apparent from the figure, and is associated with the flow impingement onto the leading

edge; the pressure rises in the region of a stagnation point in accordance with Bernoulli’s principle.

It can also be seen that the low pressure region around maximum wing thickness, associated with

flow acceleration, is also captured reasonably well by the computation.

Figure 10.12 shows profiles of the pressure coefficient on the surface of the wing, at four different

spanwise locations. It can be seen from the figure that there is virtually no spanwise variation in

the surface pressure between y/T = 1.72 and y/T = 1.46 (this is observed both experimentally

and computationally). On the other hand, there is modest variation between the top-most and

bottom-most rows (located at y/T = 1.72 and y/T = 0.13 respectively) since the latter experiences

323

slower moving fluid due to the lower wall boundary layer, and hence displays a smaller variation

between positive stagnation and negative suction peaks due to the lower centrifugal force associated

with the flow curvature. It can be seen that there is generally a very good agreement between

computation and experiment for all rows considered. There is however a consistent discrepancy

around x/T = 0.75 (i.e. at maximum thickness) for all four rows which is particularly apparent

outside of the lower wall boundary layer. The computed pressure at x/T ≈ 0.75 is systematically

higher than that which is measured. The reason for this discrepancy is not fully clear, however

it is possible that the measured pressure at this location is influenced by the trip wires, located a

short distance upstream of maximum thickness. Circular cross section trip wires of not insignificant

diameter (i.e. 0.014T diameter), have been used in the experiment. These are placed at x/T = 0.61.

The measurements taken at x/T ≈ 0.75 may therefore lie in the wake of these trip wires, and hence

the pressure would be expected to be lower than would have been observed in the absence of the

trip wires.

It can also be seen from Figure 10.12 that the experimental pressure measurements at x/T ≈ 0.75

displays considerable asymmetry between the left and right sides of the wing (note that pressure

measurements from both sides of the wing have been included where available, hence the presence

of two pressure measurements at some x/T stations). Such asymmetry is not observed at other

chord-wise locations. The difference in left and right measurements at x/T ≈ 0.75 is larger than

the reported uncertainty in the pressure measurements (i.e. δCP = ±0.005, [89]), thereby somewhat

undermining the validity of the experimental data in this region. Such asymmetry perhaps supports

the hypothesis that the wake induced by the trip wires is the cause of the anomaly; small geometrical

uncertainties in the location of the trip wire could be the cause of the asymmetry.

10.5.2 Symmetry plane mean velocity and turbulence results, upstream

of leading edge

Figure 10.13 shows profiles of the streamwise velocity in the symmetry plane, at z/T = 0. It

can be seen that the streamwise velocity magnitude is reduced with increasing x/T . This is due

to the adverse pressure gradient this flow is subjected to on approaching the stagnation point at

the wing’s leading edge. It can also be seen from the figure that at and downstream of rake 6

(x/T = −0.25), the flow has separated from the lower wall. This is observed both experimentally

324

and computationally, however the strength of the reversed flow is greater experimentally than is

predicted by the computations at this rake location, suggesting that separation is predicted too

late by the computations. The reason for this discrepancy is likely to be due to the failure of the

turbulence model to account for the individual Reynolds stress components, as will be seen presently.

The vertical mean velocity component profiles are shown in Figure 10.14 (at the same rake

locations as considered for the streamwise velocity). Here is can be seen that there is a general un-

derestimate in the strength of the secondary flow. This is also consistent with the delayed separation

prediction.

Figure 10.15 shows profiles of the streamwise normal Reynolds stress component at the same

rake locations as those considered for the streamwise velocity profiles. It can be seen from this figure

that this Reynolds stress component is generally underpredicted for all but the final two rakes. This

is due to the turbulence model’s failure in resolving the anisotropy of the turbulence, and instead

assuming all three normal stress components equal to one another. In reality however, the streamwise

component is significantly higher than v′2 and w′2 upstream of the stagnation point. This is due to

the fact that the turbulence energy, generated by mean velocity gradients, is preferentially fed into

the u′2 component since the dominant velocity gradient is ∂u/∂y. The reason for this preference can

readily be seen by subtracting the RANS equations from the instantaneous Navier Stokes equations,

and combining the results from the i and j direction momentum equations in such a way as to derive

a transport equation for u′iu
′
j . In so doing, the exact production term for the individual Reynolds

stress components will become apparent:

Pij = −
(
u′iu
′
k

∂uj
∂xk

+ u′ju
′
k

∂ui
∂xk

)
(10.1)

The w′2 and v′2 stress components are lower than u′2 since the gradients of v and w are substan-

tially smaller than ∂u/∂y. Instead these components are energised primarily by the redistribution

process arising from the instantaneous pressure fluctuations. Additionally, the v′2 component is

damped by kinematic blocking due to the presence of the lower wall. As such, u′2 > w′2 > v′2 would

be expected, however this anisotropy is neglected in the computations.

Close to the stagnation region at the leading edge, it can be seen that the streamwise normal

Reynolds stress component is now overpredicted rather than underpredicted as was seen further

325

upstream (see Figure 10.15 rakes 9 and 10, x/T = −0.10 and x/T = 0.05 respectively). This is

due to the fact that the flow experiences rapid deceleration due to the adverse pressure gradient

ahead of the stagnation line. It is well understood that the eddy viscosity class of turbulence models

tends to produce exorbitant values of turbulence energy in regions of high rates of strain [95, 96].

The reasons for this are partially due to an underprediction in the value of ε, leading to excessive

turbulent viscosity, which in turn feeds into the production term, Pk, [95]. The u′2 stress component

is also selectively damped due to the blocking effect of the wing wall; an anisotropic feature of the

turbulence that cannot be depicted via the use of a single scalar (i.e. the eddy viscosity) which is

essentially the approximation employed by eddy viscosity models.

In addition to the high strain rates and selective dampening of the u′2 stress component, the

P33 term is negative for the real flow (since w′2∂w/∂z is positive), meaning that some energy is

transfered from the turbulent fluctuations to the mean flow. This leads to a reduction of w′2 in the

vicinity of the stagnation region, and subsequently of the remaining normal stress components via

the redistribution process. This is not accounted for in the computations since the gradient ∂w/∂z

acts to increase the turbulence energy in the computed flow regardless of sign; there is no mechanism

for accounting for the transfer of energy to the mean flow from the turbulent fluctuations within an

eddy viscosity class of turbulence model.

While P33 is always negative at the leading edge for the present case, P11 and P22 may also be

negative depending on the local gradients of u and v respectively. In such a situation, the negative

production terms would act to reduce the turbulence kinetic energy for the real flow. However, when

employing the eddy viscosity model the production of turbulence kinetic energy is again augmented

regardless of sign (by a factor proportional to the mean velocity gradient squared). This leads to

excessive turbulence energy predictions.

Figure 10.16 shows profiles of the Reynolds shear stress component, −u′v′ in the symmetry

plane, at the same rake locations as those considered for the mean velocity. It can be seen from

the figure that the agreement between computation and experiment for rakes 1-4 is encouraging

(i.e. for x/T ≤ −0.40 - See Figure 10.17 for an enlarged scale plot of these profiles). This perhaps

comes as little surprise since the turbulence production at these rake locations is dominated by the

∂u/∂y velocity gradient, and the flow deviates only slightly from simple shear flow for which the

model is known to perform well (particularly given simple shear is one of the cases used to calibrate

the model’s coefficients). As the rake progress further downstream however, there is a significant

326

discrepancy. It can be seen from the figure that there is a large growth of the measured stress −u′v′

close to the lower wall at rakes 5-7, that is not captured in the computations. This is due to the fact

that flow separation is predicted too late by the computational model. In the recirculating flow, the

turbulence producing mean velocity gradients are large. Since in the computation the recirculation

region is predicted too late, the turbulence levels are initially underestimated. On the other hand,

rakes 9 and 10 show a general overprediction in the Reynolds shear stress component, −u′v′, which

is again due to the stagnation point anomaly described earlier. The eddy viscosity at these rake

locations is excessively high due to an underestimate of the dissipation rate around the stagnation

region, leading to excessive predictions of the Reynolds shear stress.

The fact that the separation point is predicted too late in the computational model is unlikely to

be attributable to turbulence shear stress levels, since there is good agreement between computation

and experiment upstream of the measured separation point (e.g. rakes 1-4, Figure 10.17). Instead

one must look toward the normal stress component as the possible culprit. It can be seen from Figure

10.18 that the measured normal stress component grows rapidly with increasing x upstream of the

measured separation point. This adverse normal stress gradient contributes to the adverse pressure

gradient so as to induce separation earlier than would have been observed in its absence. This effect

is not captured in the computations due to the failure of the model to provide anisotropic normal

stress predictions. Separation therefore occurs later in the computational model than is measured.

10.5.3 Flow features at maximum wing thickness

Figure 10.19 shows profiles of the streamwise velocity component at several vertically aligned rakes

lying in an xy-plane which intersects the maximum wing thickness (i.e. x/T = 0.75). One of the

most notable features that can be seen from the figure is that the experimental velocity profile

displays a marked ‘kink’ close to the groundplate for rakes 5− 8. This is not captured satisfactorily

in the computations. The reasons for this kink is likely to be due to the momentum transfer posed by

the vertical flow associated with the vortex. At the outside of the vortex (away from the symmetry

plane) the vertical flow acts to transfer low momentum fluid in the lower plate boundary layer away

from the lower wall, thereby retarding the streamwise fluid away from the wall. Conversely, on the

inner portion of the vortex (i.e. closest to the symmetry plane) the vertical flow acts to enhance the

streamwise flow in the lower wall boundary layer, causing the observed kinks and also increasing the

wall shear stress. This process is not fully captured in the simulations since the simulated vortex

327

structure is smaller and weaker than that of the experiments due to the delayed separation at the

leading edge.

In addition to the momentum transfer by the mean secondary flow, the turbulence fluctuations

are also likely to play a significant role in the ‘kink’ development observed in Figure 10.19. The

Reynolds shear stress component −u′v′ is likely to be the dominant stress contributing to such a

kink; this stress is contributed to via the large gradients of the vertical mean velocity component

in the vortex flow (in addition to streamwise gradients that remain present with or without the

vortex). Unfortunately this Reynolds stress component is not presented in the experimental data,

hence support of this is unavailable.

Figure 10.20 shows profiles of the cross-flow velocity component at the same rake locations as

were considered in Figure 10.19. It can be seen from the figure that there is a general underestimate

of the strength of the secondary flow, again suggesting a smaller and weaker vortex structure is

predicted than is observed experimentally. This is consistent with the delayed separation ahead of

the wing leading edge just reported in Section 10.5.2. Since the initial vortex size (and strength)

in the symmetry plane is underpredicted, the vortex structure a short distance downstream of this

initial vortex will also tend to be underpredicted (since there is insufficient time for the vortex to

have grown significantly via secondary fluid motions).

The secondary flow observed in Figure 10.20 is augmented by the way in which the lower wall

boundary layer interacts with the wing. There is a strong streamline curvature upstream of the

wing’s leading edge as the flow conforms to the wing contour. A pressure gradient acting towards

the centre of curvature (i.e. away from the wing wall) is therefore established in order to balance

the centrifugal force associated with this streamline curvature. This pressure gradient is reasonably

uniform in the vertical direction (this is due to the fact that the pressure gradient in the vertical

direction must be small enough so as not to induce spurious vertical fluid motions). Since the fluid

close to the lower wall has a lower velocity (due to it being within the lower wall boundary layer),

yet it experiences much the same radial pressure gradient as the essentially inviscid fluid above,

the radius of curvature of the streamlines within the lower wall boundary layer must be lower than

that of the fluid above in order for the pressure and centrifugal forces to balance. It is this sharper

turning close to the ground plate, relative to the fluid above, that causes the secondary flow.

There is a second mechanism for the generation of secondary flow within a turbulent flow. At

the junction between the wing and the lower wall, normal stress components are selectively damped

328

due to the presence of the various walls, thereby causing a large normal stress anisotropy near the

junction. On approaching the wing surface, the w′2 stress component is selectively damped, causing

a transport of momentum towards the wing surface. Similarly, on approaching the lower wall, v′2

is selectively damped, causing a transport of momentum towards the lower wall. The net effect

is a net transport of momentum towards the junction corner, with typically twin counter-rotating

vortices. Since there is a single vortex in the present case, rather than the twin vortices that would

be obtained via this mechanism, one can conclude that predominant mechanism of secondary flow

generation for the present study is due to the streamline curvature. However, it is possible that

normal stress anisotropy could have a noticeable effect on the vortex shape. Since the anisotropic

nature of the turbulence is not captured in the present simulations, this effect will not be present in

the computed results, possibly explaining some of the discrepancy between results observed.

In Figure 10.21 the Reynolds normal stress component u′2 is shown at the same rake locations

as above (i.e. at maximum wing thickness). It can be seen from the figures there is a general

underprediction of the normal stress; partly due to the anisotropy reasons outlined earlier. The

large discrepancy in the core of the vortex is likely to be enhanced by the use of a length scale

correction term in the present study, which acts to reduce the turbulence levels in separated flows.

While normal stress predictions may have been impaired through the use of such a correction, the

more influential shear stress predictions are likely to be better than would have been obtained in

the absence of its use.

Figure 10.22 shows the shear stress component, −u′w′. It can be seen from the figure that the

shear stress prediction is reasonable (while there are clearly major differences between computation

and experiment, this is to be expected due to the simplicity of the turbulence model).

10.5.4 Flow in the wake

It was seen in Figure 10.10 that, as well as upstream of the wing’s leading edge, the flow streamlines

also exhibit reasonably strong curvature a short distance downstream of the wing’s trailing edge

(since the streamlines must realign with the x-direction vector in order to avoid crossing the symme-

try plane). This additional curvature acts to augment the secondary flow via the process described

in the previous section. The increased secondary flow acts to strengthen the vortex causing the rapid

expansion in the vortex structure that was observed in Figure 10.7.

Figure 10.23 shows velocity vectors and contours of the Q-criterion, in the plane x/T = 6.38,

329

both clearly illustrating the vortex.

Figure 10.24 shows profiles of the streamwise velocity component at rakes taken through the

vortex, at x/T = 6.4 (i.e. half a chord length downstream of the wing’s trailing edge). It can

be seen from the figure that the ‘kink’ that the streamwise velocity component experiences (which

was also seen further upstream and is due to the momentum transfer by the secondary flow), is

enhanced relative to that which was observed at maximum wing thickness. This is due to the

enlarged vortex structure in the wake relative to that at maximum thickness. Again, the computed

profile does not capture this kink particularly satisfactorily at Profile 2, suggesting a different vortex

structure is predicted in the wake. The transfer of momentum by the secondary flow has limited

cross-stream range, as is indicated by Figure 10.8. The locations at which the experimental data was

taken lie between the location at which the predicted secondary flow momentum transfer is greatest

(which is located between Profiles 2 and 3). The fact that a different vortex structure is observed

is unsurprising given the differences in the structure previously discussed further upstream. The

discrepancies further upstream, due predominantly to the incorrect separation point at the leading

edge, are convected downstream.

Figure 10.25 shows profiles of the cross-stream velocity component at the same rake locations

as were considered in Figure 10.24. It can be seen that a fairly good agreement is found between

computation and experiment at the majority of rakes, although away from the symmetry plane (e.g.

Profiles 1 and 2), the strength is underestimated by a fair margin, suggesting an underestimate in

the vortex size. This finding is consistent with the lack of the ‘kink’ at Profile 2 that was seen in

Figure 10.24.

In Figure 10.26, profiles of the streamwise normal stress component in the wake are reported. It

can be seen that the experimental normal stress levels away from the symmetry plane shows a ‘Z’

shape profile that is not satisfactorily captured in the computation. In the experiment away from

the symmetry plane, the P33 term is generally positive close to the lower wall (since w′2∂w/∂z < 0).

Further from the wall, the opposite is true (i.e. over the upper portion of the vortex). It is this

effect that causes the ‘Z’ shaped profiles of u′2 away from the symmetry plane (note that P33 affects

the streamwise normal stress component via the redistribution process).

The production term P22 also plays a role in the shape of the normal stress profiles via the

redistribution process. The affect of P22 away from the symmetry plane is to reduce the turbulence

energy close to the wall (since v′2∂v/∂y > 0), while increasing it over the upper portion of the vortex.

330

However, since the gradients of the vertical mean velocity are prominent only over the sides of the

vortex structure, P22 is significant only over some of the rakes. Also, since the v′2 stress component

is damped by the presence of the lower wall, the affect of P22 is diminished relative to P33.

Since the aforementioned factors are not accounted for in an eddy viscosity model, it is unsur-

prising that the ‘Z’-shape profile is not captured in the computations.

For completeness, profiles of the Reynolds shear stress component−u′w′ in the wake are presented

in Figure 10.27. Here it can be seen that the agreement is reasonable over most of the profiles. There

is however an underprediction in the turbulence levels close to the symmetry plane and away from

the lower wall (at z/T = −0.1). The reason for this may be due to an underprediction in the width

of the wake away from the lower wall (i.e. above the vortex). In this situation, the profile taken

through z/T = −0.1 may be lying on the edge of the computed wake, while going through the

experimental wake, thereby explaining the discrepancy. Possible reasons for an underprediction of

the width of the wake include the performance of the k − ε class of models in regions of adverse

pressure such as that encountered at the trailing edge of the wing. The excessive turbulence levels

that are predicted in this situation act to ‘fill’ the wake rapidly as was discussed in detail in Chapter

8.

10.6 Conclusion

The turbulent flow around a wing body junction has been computed. It has been shown a good

agreement between computation and experiment is obtained for the pressure field. Reasonable

predictions of the mean velocity components have also generally been achieved (although there is

some moderate discrepancy at places). The leading edge separation point, however, is not well

captured, and consequently the downstream vortex structure is different to that of the experiments.

The discrepancy in the leading edge separation point location is attributable to the simplicity

of the turbulence model. The use of an eddy viscosity model, and its subsequent failure to pro-

vide anisotropic normal stress predictions for complex flows involving impingement, is therefore not

recommended. A more appropriate selection would perhaps be some variant of a second-moment

closure (e.g. Refs. [97, 98]) or even a LES simulation. However, given the purpose of the present

computations is not to provide quantitative predictions of the flow-field, but rather to investigate the

applicability of the overset method in dealing with such a geometry, the use of a simpler turbulence

331

model is justifiable here.

The overset grid method has been shown to provide good solution continuity over the interface.

The method is useful even for this relatively simple geometry since Cartesian meshes cover the

majority of the domain.

332

10.7 Figures

333

Figure 10.1: Sample grids used for the hole cutting of a generic wing-fuselage junction
junction problem.

334

Figure 10.2: Junction geometry and right hand coordinate system used. Origin located at
the junction between the wing’s leading edge and the groundplate.

335

Figure 10.3: Computational grids used. Domain decomposed via the use of three overset
grids.

336

Figure 10.4: Contours of pressure coefficient at the spanwise location y/T = 2.0 for the two
grid resolutions considered.

337

ADVANCED TURBULENCE MODELS IN A GENERIC WING-BODY JUNCTION 33

Figure 2. Details of the computational mesh.

and Reynolds [20]. Outflow boundaries, with zero coordinate-wise gradient, were
assumed at x/T = 10 and z/T = 9.5, a zero-stress boundary was set at y/T = 3
and a symmetry plane was prescribed on z = 0. In the experiments, side-wall
inserts were used to minimise blockage effects, and a gap left between the top of
the wing and the wind-tunnel ceiling to prevent formation of a second junction
vortex. No-slip conditions were specified at all walls.

3.2. COMPUTATIONAL GRID

A single-block C-topology was chosen to accommodate the constraints of some
partners contributing computational solutions. Following a series of calculations
with selective refinement in different areas, with particular attention paid to the
near-wall y+-requirements of low-Re turbulence models, the final grid adopted
was a C-type hexahedral finite-volume mesh of 144 × 48 × 48 (332,000) cells,
covering one half of the symmetric wing. The near-field grid is shown in Figure 2,
and this gives a view of the clustering adopted near walls, especially just upstream
of the leading edge and in the junction region. The grid size used here is similar to
that of Chen [4], but somewhat coarser than Parneix et al.’s [21], whose mesh is,
however, an overlapping 3-zone arrangement quite different from that used here.
The quarter-elliptic nose section and the NACA tail were covered, along the profile

Figure 10.5: Grids used in [93].

338

Figure 10.6: Contours of pressure on wing and groundplate walls (scale increasing blue to
red), with secondary velocity vectors in the wake and symmetry plane (not drawn to same

scale).

339

Figure 10.7: Iso-surface of Q = 0.5, showing the vortex structure. Note that translucency has
been applied to the surface of the wing.

340

Figure 10.8: Contours of the streamwise velocity component, U , at two spanwise locations,
y/T = 2.0 (above) and y/T = 0.2 (below).

341

Figure 10.9: Contours of turbulent kinetic energy at two spanwise locations, y/T = 2.0
(above) and y/T = 0.2 (below).

342

Y X

Z

Figure 10.10: Flow streamlines at y/T = 2.

343

0.20.2

0
.
0

-
0
.
2

-0.
4

-0.6

-0.2

-
0
.
2

-
0
.
4

0
.
0

0
.
0

0-0.2

-0
.3

-
0
.
3-0.

4

-
0
.
2

0.1

-
0
.
1

-
0
.
1 0-0.7

0

0
.
1 0
.
1

0
.
2

0
.
2

Experimental

Present Study

0.1
-
0
.
1

Figure 10.11: Contours of pressure coefficient, Cp = 2(P − P∞)/(ρU2
∞), on the lower wall, with

experimental comparison.

344

x/T

Cp

-0.5 0 0.5 1 1.5 2 2.5 3 3.5-1.5

-1

-0.5

0

0.5

1

y/T = 1.72

x/T

Cp

-0.5 0 0.5 1 1.5 2 2.5 3 3.5-1.5

-1

-0.5

0

0.5

1

y/T = 1.46

x/T

Cp

-0.5 0 0.5 1 1.5 2 2.5 3 3.5-1.5

-1

-0.5

0

0.5

1

y/T = 0.40

x/T

Cp

-0.5 0 0.5 1 1.5 2 2.5 3 3.5-1.5

-1

-0.5

0

0.5

1

y/T = 0.13

Figure 10.12: Profiles of pressure coefficient on the wing surface at four spanwise locations,
y/T = 1.72, 1.46, 0.40 and 0.13.

345

U
/
U
b
u
l
k

y/T

-0
.5

0
0.
5

1

0

0.
2

0.
4

0.
6

0.
81

1.
2

1)
x
/T

=
−

0
.8

6

U
/
U
b
u
l
k

y/T

-0
.5

0
0.
5

1

0

0.
2

0.
4

0.
6

0.
81

1.
2

6)
x
/T

=
−

0
.2

5

U
/
U
b
u
l
k

y/T

-0
.5

0
0.
5

1

0

0.
2

0.
4

0.
6

0.
81

1.
2

2)
x
/T

=
−

0.
6
7

U
/
U
b
u
l
k

y/T

-0
.5

0
0.
5

1

0

0.
2

0.
4

0.
6

0.
81

1.
2

7)
x
/T

=
−

0.
2
0

U
/
U
b
u
l
k

y/T

-0
.5

0
0.
5

1

0

0.
2

0.
4

0.
6

0.
81

1.
2

3
)
x
/
T

=
−

0.
4
6

U
/
U
b
u
l
k

y/T

-0
.5

0
0.
5

1

0

0.
2

0.
4

0.
6

0.
81

1.
2

8
)
x
/
T

=
−

0.
1
5

U
/
U
b
u
l
k

y/T

-0
.5

0
0.
5

1

0

0.
2

0.
4

0.
6

0.
81

1.
2

4
)
x
/
T

=
−

0.
4
0

U
/
U
b
u
l
k

y/T

-0
.5

0
0.
5

1

0

0.
2

0.
4

0.
6

0.
81

1.
2

9
)
x
/
T

=
−

0.
1
0

U
/
U
b
u
l
k

y/T

-0
.5

0
0.
5

1

0

0.
2

0.
4

0.
6

0.
81

1.
2

5
)
x
/
T

=
−

0.
3
5

U
/
U
b
u
l
k

y/T

-0
.5

0
0.
5

1

0

0.
2

0.
4

0.
6

0.
81

1.
2

1
0
)
x
/
T

=
−

0.
0
5

F
ig

u
re

1
0
.1

3
:

N
o
rm

a
li
se

d
st

re
a
m

w
is

e
v
e
lo

c
it

y
c
o
m

p
o
n
e
n
t

in
th

e
sy

m
m

e
tr

y
p
la

n
e

(z
/
T

=
0
)

346

V
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0
0.
2

0

0.
2

0.
4

0.
6

0.
81

1.
2

1)
x
/T

=
−

0
.8

6

V
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0
0.
2

0

0.
2

0.
4

0.
6

0.
81

1.
2

6)
x
/T

=
−

0
.2

5

V
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0
0.
2

0

0.
2

0.
4

0.
6

0.
81

1.
2

2)
x
/T

=
−

0.
6
7

V
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0
0.
2

0

0.
2

0.
4

0.
6

0.
81

1.
2

7)
x
/T

=
−

0.
2
0

V
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0
0.
2

0

0.
2

0.
4

0.
6

0.
81

1.
2

3
)
x
/
T

=
−

0.
4
6

V
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0
0.
2

0

0.
2

0.
4

0.
6

0.
81

1.
2

8
)
x
/
T

=
−

0.
1
5

V
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0
0.
2

0

0.
2

0.
4

0.
6

0.
81

1.
2

4
)
x
/
T

=
−

0.
4
0

V
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0
0.
2

0

0.
2

0.
4

0.
6

0.
81

1.
2

9
)
x
/
T

=
−

0.
1
0

V
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0
0.
2

0

0.
2

0.
4

0.
6

0.
81

1.
2

5
)
x
/
T

=
−

0.
3
5

V
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0
0.
2

0

0.
2

0.
4

0.
6

0.
81

1.
2 1

0
)
x
/
T

=
−

0.
0
5

F
ig

u
re

1
0
.1

4
:

V
e
rt

ic
a
l

v
e
lo

c
it

y
c
o
m

p
o
n
e
n
t,
V

,
in

th
e

sy
m

m
e
tr

y
p
la

n
e

(z
/
T

=
0
)

347

uu
/U

bu
lk2

y/T

0
0.
05

0.
1

0

0.
2

0.
4

0.
6

0.
81

1.
2

1)
x
/T

=
−

0
.8

6

uu
/U

bu
lk2

y/T

0
0.
05

0.
1

0

0.
2

0.
4

0.
6

0.
81

1.
2

6)
x
/T

=
−

0
.2

5

uu
/U

bu
lk2

y/T

0
0.
05

0.
1

0

0.
2

0.
4

0.
6

0.
81

1.
2

2)
x
/T

=
−

0.
6
7

uu
/U

bu
lk2

y/T

0
0.
05

0.
1

0

0.
2

0.
4

0.
6

0.
81

1.
2

7)
x
/T

=
−

0.
2
0

uu
/U

bu
lk2

y/T

0
0.
05

0.
1

0

0.
2

0.
4

0.
6

0.
81

1.
2

3
)
x
/
T

=
−

0.
4
6

uu
/U

bu
lk2

y/T

0
0.
05

0.
1

0

0.
2

0.
4

0.
6

0.
81

1.
2

8
)
x
/
T

=
−

0.
1
5

uu
/U

bu
lk2

y/T

0
0.
05

0.
1

0

0.
2

0.
4

0.
6

0.
81

1.
2

4
)
x
/
T

=
−

0.
4
0

uu
/U

bu
lk2

y/T

0
0.
05

0.
1

0

0.
2

0.
4

0.
6

0.
81

1.
2

9
)
x
/
T

=
−

0.
1
0

uu
/U

bu
lk2

y/T

0
0.
05

0.
1

0

0.
2

0.
4

0.
6

0.
81

1.
2

5
)
x
/
T

=
−

0.
3
5

uu
/U

bu
lk2

y/T

0
0.
05

0.
1

0

0.
2

0.
4

0.
6

0.
81

1.
2

1
0
)
x
/
T

=
−

0.
0
5

F
ig

u
re

1
0
.1

5
:

S
tr

e
a
m

w
is

e
n
o
rm

a
l

R
e
y
n
o
ld

s
st

re
ss

c
o
m

p
o
n
e
n
t,
u
′ u
′ ,

in
th

e
sy

m
m

e
tr

y
p
la

n
e

(z
/
T

=
0
)

348

-
u
v
/
U
b
u
l
k2

y/T

0
0.
02

0

0.
2

0.
4

0.
6

0.
81

1.
2

1)
x
/T

=
−

0
.8

6

-
u
v
/
U
b
u
l
k2

y/T

0
0.
02

0

0.
2

0.
4

0.
6

0.
81

1.
2

6)
x
/T

=
−

0
.2

5

-
u
v
/
U
b
u
l
k2

y/T

0
0.
02

0

0.
2

0.
4

0.
6

0.
81

1.
2

2)
x
/T

=
−

0.
6
7

-
u
v
/
U
b
u
l
k2

y/T

0
0.
02

0

0.
2

0.
4

0.
6

0.
81

1.
2

7)
x
/T

=
−

0.
2
0

-
u
v
/
U
b
u
l
k2

y/T

0
0.
02

0

0.
2

0.
4

0.
6

0.
81

1.
2

3
)
x
/
T

=
−

0.
4
6

-
u
v
/
U
b
u
l
k2

y/T

0
0.
02

0

0.
2

0.
4

0.
6

0.
81

1.
2

8
)
x
/
T

=
−

0.
1
5

-
u
v
/
U
b
u
l
k2

y/T

0
0.
02

0

0.
2

0.
4

0.
6

0.
81

1.
2

4
)
x
/
T

=
−

0.
4
0

-
u
v
/
U
b
u
l
k2

y/T

0
0.
02

0

0.
2

0.
4

0.
6

0.
81

1.
2

9
)
x
/
T

=
−

0.
1
0

-
u
v
/
U
b
u
l
k2

y/T

0
0.
02

0

0.
2

0.
4

0.
6

0.
81

1.
2

5
)
x
/
T

=
−

0.
3
5

-
u
v
/
U
b
u
l
k2

y/T

0
0.
02

0

0.
2

0.
4

0.
6

0.
81

1.
2

1
0
)
x
/
T

=
−

0.
0
5

F
ig

u
re

1
0
.1

6
:

R
e
y
n
o
ld

s
sh

e
a
r

st
re

ss
c
o
m

p
o
n
e
n
t,
−
u
′ v
′ ,

in
th

e
sy

m
m

e
tr

y
p
la

n
e

(z
/
T

=
0
)

349

-
u
v
/
U
b
u
l
k2

y/T

0
0.
00
2

0.
00
4

0

0.
2

0.
4

0.
6

0.
81

1.
2

1)
x
/T

=
−

0.
86

-
u
v
/
U
b
u
l
k2

y/T

0
0.
00
2

0.
00
4

0

0.
2

0.
4

0.
6

0.
81

1.
2

2
)
x
/
T

=
−

0.
6
7

-
u
v
/
U
b
u
l
k2

y/T

0
0.
00
2

0.
00
4

0

0.
2

0.
4

0.
6

0.
81

1.
2

3
)
x
/
T

=
−

0
.4

6

-
u
v
/
U
b
u
l
k2

y/T

0
0.
00
2

0.
00
4

0

0.
2

0.
4

0.
6

0.
81

1.
2

4
)
x
/
T

=
−

0.
4
0

F
ig

u
re

1
0
.1

7
:

E
n
la

rg
e
m

e
n
t

o
f

th
e

fi
rs

t
fo

u
r

p
ro

fi
le

s
o
f

F
ig

u
re

1
0
.1

6
.

S
tr

e
ss

c
o
m

p
o
n
e
n
t,
−
u
′ v
′ ,

in
th

e
sy

m
m

e
tr

y
p
la

n
e

(z
/
T

=
0
)

350

u
u
/
U
b
u
l
k2

y/T

0
0.
00
5

0.
01

0.
01
5

0.
02

0

0.
2

0.
4

0.
6

0.
81

1.
2

1)
x
/T

=
−

0.
86

u
u
/
U
b
u
l
k2

y/T

0
0.
00
5

0.
01

0.
01
5

0.
02

0

0.
2

0.
4

0.
6

0.
81

1.
2

2
)
x
/
T

=
−

0.
6
7

u
u
/
U
b
u
l
k2

y/T

0
0.
00
5

0.
01

0.
01
5

0.
02

0

0.
2

0.
4

0.
6

0.
81

1.
2

3
)
x
/
T

=
−

0
.4

6

u
u
/
U
b
u
l
k2

y/T

0
0.
00
5

0.
01

0.
01
5

0.
02

0

0.
2

0.
4

0.
6

0.
81

1.
2

4
)
x
/
T

=
−

0.
4
0

F
ig

u
re

1
0
.1

8
:

E
n
la

rg
e
m

e
n
t

o
f

th
e

fi
rs

t
fo

u
r

p
ro

fi
le

s
o
f

F
ig

u
re

1
0
.1

5
.

S
tr

e
ss

c
o
m

p
o
n
e
n
t,
u
′2

,
in

th
e

sy
m

m
e
tr

y
p
la

n
e

(z
/
T

=
0
)

351

U
/
U
b
u
l
k

y/T

0
0
.5

1
1
.5

0

0
.2

0
.4

0
.6

0
.81

1
.2

1)
z
/T

=
−

1
.5

3

U
/
U
b
u
l
k

y/T

0
0
.5

1
1
.5

0

0
.2

0
.4

0
.6

0
.81

1
.2

5)
z
/T

=
−

1
.0

0

U
/
U
b
u
l
k

y/T

0
0
.5

1
1
.5

0

0
.2

0
.4

0
.6

0
.81

1
.2

2
)
z
/
T

=
−

1.
3
3

U
/
U
b
u
l
k

y/T

0
0
.5

1
1
.5

0

0
.2

0
.4

0
.6

0
.81

1
.2

6
)
z
/
T

=
−

0.
9
3

U
/
U
b
u
l
k

y/T

0
0
.5

1
1
.5

0

0
.2

0
.4

0
.6

0
.81

1
.2

3
)
z
/
T

=
−

1.
1
8

U
/
U
b
u
l
k

y/T

0
0
.5

1
1
.5

0

0
.2

0
.4

0
.6

0
.81

1
.2

7
)
z
/
T

=
−

0.
8
5

U
/
U
b
u
l
k

y/T

0
0
.5

1
1
.5

0

0
.2

0
.4

0
.6

0
.81

1
.2

4)
z
/
T

=
−

1.
0
8

U
/
U
b
u
l
k

y/T

0
0
.5

1
1
.5

0

0
.2

0
.4

0
.6

0
.81

1
.2

8)
z
/
T

=
−

0.
7
8

F
ig

u
re

1
0
.1

9
:

N
o
rm

a
li
se

d
st

re
a
m

w
is

e
v
e
lo

c
it

y
c
o
m

p
o
n
e
n
t,

U
,

in
a

y
z
-p

la
n
e

a
t

m
a
x
im

u
m

w
in

g
th

ic
k
n
e
ss

(x
/
T

=
0
.7
5
)

352

W
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0

0

0
.2

0
.4

0
.6

0
.81

1
.2

1)
z
/T

=
−

1
.5

3

W
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0

0

0
.2

0
.4

0
.6

0
.81

1
.2

5)
z
/T

=
−

1
.0

0

W
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0

0

0
.2

0
.4

0
.6

0
.81

1
.2

2
)
z
/
T

=
−

1.
3
3

W
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0

0

0
.2

0
.4

0
.6

0
.81

1
.2

6
)
z
/
T

=
−

0.
9
3

W
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0

0

0
.2

0
.4

0
.6

0
.81

1
.2

3
)
z
/
T

=
−

1.
1
8

W
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0

0

0
.2

0
.4

0
.6

0
.81

1
.2

7
)
z
/
T

=
−

0.
8
5

W
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0

0

0
.2

0
.4

0
.6

0
.81

1
.2

4)
z
/
T

=
−

1.
0
8

W
/
U
b
u
l
k

y/T

-0
.4

-0
.2

0

0

0
.2

0
.4

0
.6

0
.81

1
.2

8)
z
/
T

=
−

0.
7
8

F
ig

u
re

1
0
.2

0
:

N
o
rm

a
li
se

d
c
ro

ss
-s

tr
e
a
m

v
e
lo

c
it

y
c
o
m

p
o
n
e
n
t,

W
,

in
a

p
la

n
e

a
t

m
a
x
im

u
m

w
in

g
th

ic
k
n
e
ss

(x
/
T

=
0
.7
5
)

353

u
u
/
U
b
u
l
k2

y/T

0
0
.0
1

0
.0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

1)
z
/T

=
−

1
.5

3

u
u
/
U
b
u
l
k2

y/T

0
0
.0
1

0
.0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

5)
z
/T

=
−

1
.0

0

u
u
/
U
b
u
l
k2

y/T

0
0
.0
1

0
.0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

2
)
z
/
T

=
−

1.
3
3

u
u
/
U
b
u
l
k2

y/T

0
0
.0
1

0
.0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

6
)
z
/
T

=
−

0.
9
3

u
u
/
U
b
u
l
k2

y/T

0
0
.0
1

0
.0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

3
)
z
/
T

=
−

1.
1
8

u
u
/
U
b
u
l
k2

y/T

0
0
.0
1

0
.0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

7
)
z
/
T

=
−

0.
8
5

u
u
/
U
b
u
l
k2

y/T

0
0
.0
1

0
.0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

4)
z
/
T

=
−

1.
0
8

u
u
/
U
b
u
l
k2

y/T

0
0
.0
1

0
.0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

8)
z
/
T

=
−

0.
7
8

F
ig

u
re

1
0
.2

1
:

S
tr

e
a
m

w
is

e
n
o
rm

a
l

R
e
y
n
o
ld

s
st

re
ss

c
o
m

p
o
n
e
n
t,
u
′2

,
a
t

m
a
x
im

u
m

w
in

g
th

ic
k
n
e
ss

(x
/
T

=
0
.7
5
)

354

-
u
w
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

1)
z
/T

=
−

1
.5

3

-
u
w
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

5)
z
/T

=
−

1
.0

0

-
u
w
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

2
)
z
/
T

=
−

1.
3
3

-
u
w
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

6
)
z
/
T

=
−

0.
9
3

-
u
w
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

3
)
z
/
T

=
−

1.
1
8

-
u
w
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

7
)
z
/
T

=
−

0.
8
5

-
u
w
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

4)
z
/
T

=
−

1.
0
8

-
u
w
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

8)
z
/
T

=
−

0.
7
8

F
ig

u
re

1
0
.2

2
:

N
o
rm

a
li
se

d
c
ro

ss
-s

tr
e
a
m

R
e
y
n
o
ld

s
sh

e
a
r

st
re

ss
c
o
m

p
o
n
e
n
t,
u
′ w
′ ,

a
t

m
a
x
im

u
m

w
in

g
th

ic
k
n
e
ss

(x
/
T

=
0
.7
5
)

355

Figure 10.23: Contours of the Q-criterion in the plane x/T = 6.38 and secondary velocity
vectors.

356

U
/
U
b
u
l
k

y/T

0
0
.2

0
.4

0
.6

0
.8

1

0

0
.2

0
.4

0
.6

0
.81

1
.2

1)
z
/T

=
−

1.
2

U
/
U
b
u
l
k

y/T

0
0
.2

0
.4

0
.6

0
.8

1

0

0
.2

0
.4

0
.6

0
.81

1
.2

5)
z
/T

=
−

0.
4

U
/
U
b
u
l
k

y/T

0
0
.2

0
.4

0
.6

0
.8

1

0

0
.2

0
.4

0
.6

0
.81

1
.2

2
)
z
/
T

=
−

0
.8

U
/
U
b
u
l
k

y/T

0
0
.2

0
.4

0
.6

0
.8

1

0

0
.2

0
.4

0
.6

0
.81

1
.2

6
)
z
/
T

=
−

0
.3

U
/
U
b
u
l
k

y/T

0
0
.2

0
.4

0
.6

0
.8

1

0

0
.2

0
.4

0
.6

0
.81

1
.2

3
)
z
/
T

=
−

0.
6

U
/
U
b
u
l
k

y/T

0
0
.2

0
.4

0
.6

0
.8

1

0

0
.2

0
.4

0
.6

0
.81

1
.2

7
)
z
/
T

=
−

0.
2

U
/
U
b
u
l
k

y/T

0
0
.2

0
.4

0
.6

0
.8

1

0

0
.2

0
.4

0
.6

0
.81

1
.2

4
)
z
/
T

=
−

0.
5

U
/
U
b
u
l
k

y/T

0
0
.2

0
.4

0
.6

0
.8

1

0

0
.2

0
.4

0
.6

0
.81

1
.2

8
)
z
/
T

=
−

0.
1

F
ig

u
re

1
0
.2

4
:

N
o
rm

a
li
se

d
st

re
a
m

w
is

e
v
e
lo

c
it

y
c
o
m

p
o
n
e
n
t,

U
,

in
a

p
la

n
e

in
th

e
w

a
k
e
(x
/
T

=
6
.3
8
)

357

W
/
U
b
u
l
k

y/T

-0
.1
5

-0
.1

-0
.0
5

0
0
.0
5

0

0
.2

0
.4

0
.6

0
.81

1
.2

1)
z
/T

=
−

1.
2

W
/
U
b
u
l
k

y/T

-0
.1
5

-0
.1

-0
.0
5

0
0
.0
5

0

0
.2

0
.4

0
.6

0
.81

1
.2

5)
z
/T

=
−

0.
4

W
/
U
b
u
l
k

y/T

-0
.1
5

-0
.1

-0
.0
5

0
0
.0
5

0

0
.2

0
.4

0
.6

0
.81

1
.2

2
)
z
/
T

=
−

0
.8

W
/
U
b
u
l
k

y/T

-0
.1
5

-0
.1

-0
.0
5

0
0
.0
5

0

0
.2

0
.4

0
.6

0
.81

1
.2

6
)
z
/
T

=
−

0
.3

W
/
U
b
u
l
k

y/T

-0
.1
5

-0
.1

-0
.0
5

0
0
.0
5

0

0
.2

0
.4

0
.6

0
.81

1
.2

3
)
z
/
T

=
−

0.
6

W
/
U
b
u
l
k

y/T

-0
.1
5

-0
.1

-0
.0
5

0
0
.0
5

0

0
.2

0
.4

0
.6

0
.81

1
.2

7
)
z
/
T

=
−

0.
2

W
/
U
b
u
l
k

y/T

-0
.1
5

-0
.1

-0
.0
5

0
0
.0
5

0

0
.2

0
.4

0
.6

0
.81

1
.2

4
)
z
/
T

=
−

0.
5

W
/
U
b
u
l
k

y/T

-0
.1
5

-0
.1

-0
.0
5

0
0
.0
5

0

0
.2

0
.4

0
.6

0
.81

1
.2

8
)
z
/
T

=
−

0.
1

F
ig

u
re

1
0
.2

5
:

N
o
rm

a
li
se

d
c
ro

ss
-s

tr
e
a
m

v
e
lo

c
it

y
c
o
m

p
o
n
e
n
t,

W
,

in
a

p
la

n
e

in
th

e
w

a
k
e
(x
/
T

=
6
.3
8
)

358

u
u
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

1)
z
/T

=
−

1.
2

u
u
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

5)
z
/T

=
−

0.
4

u
u
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

2
)
z
/
T

=
−

0
.8

u
u
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

6
)
z
/
T

=
−

0
.3

u
u
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

3
)
z
/
T

=
−

0.
6

u
u
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

7
)
z
/
T

=
−

0.
2

u
u
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

4
)
z
/
T

=
−

0.
5

u
u
/
U
b
u
l
k2

y/T

0
0
.0
0
5

0
.0
1

0

0
.2

0
.4

0
.6

0
.81

1
.2

8
)
z
/
T

=
−

0.
1

F
ig

u
re

1
0
.2

6
:

S
tr

e
a
m

w
is

e
n
o
rm

a
l

R
e
y
n
o
ld

s
st

re
ss

c
o
m

p
o
n
e
n
t,
u
′2

,
in

th
e

w
a
k
e
(x
/
T

=
6
.3
8
)

359

-
u
w
/
U
b
u
l
k2

y/T

-0
.0
0
2

0
0
.0
0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

1)
z
/T

=
−

1.
2

-
u
w
/
U
b
u
l
k2

y/T

-0
.0
0
2

0
0
.0
0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

5)
z
/T

=
−

0.
4

-
u
w
/
U
b
u
l
k2

y/T

-0
.0
0
2

0
0
.0
0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

2
)
z
/
T

=
−

0
.8

-
u
w
/
U
b
u
l
k2

y/T

-0
.0
0
2

0
0
.0
0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

6
)
z
/
T

=
−

0
.3

-
u
w
/
U
b
u
l
k2

y/T

-0
.0
0
2

0
0
.0
0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

3
)
z
/
T

=
−

0.
6

-
u
w
/
U
b
u
l
k2

y/T

-0
.0
0
2

0
0
.0
0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

7
)
z
/
T

=
−

0.
2

-
u
w
/
U
b
u
l
k2

y/T

-0
.0
0
2

0
0
.0
0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

4
)
z
/
T

=
−

0.
5

-
u
w
/
U
b
u
l
k2

y/T

-0
.0
0
2

0
0
.0
0
2

0

0
.2

0
.4

0
.6

0
.81

1
.2

8
)
z
/
T

=
−

0.
1

F
ig

u
re

1
0
.2

7
:

N
o
rm

a
li
se

d
c
ro

ss
-s

tr
e
a
m

R
e
y
n
o
ld

s
sh

e
a
r

st
re

ss
c
o
m

p
o
n
e
n
t,
u
′ w
′ ,

in
th

e
w

a
k
e
(x
/
T

=
6
.3
8
)

360

Chapter 11

Conclusion

The chapters contained within this Thesis have described the various algorithms that have been

employed in the formulation of a new finite volume CFD code, with overset capabilities. A new hole

cutting algorithm has been developed that is quick and robust. The hole cutter relies heavily on being

able to find interpolation stencils expeditiously. Digital tree data structures are used in conjunction

with the rapidly converging Newton Raphson method in order to provide this capability. A new

digital tree structure is developed in this project that is based on the original method of Bonnet and

Peraire, [56]. The new formulation gives roughly the same speedup as the original method, but is

substantially easier to code.

Both standard linear interpolation and a semi-conservative mass flux based algorithm (MFBI)

[1] have been implemented in the present code. It has been shown that both algorithms perform

satisfactorily at grid independence. However, improvements in the rate of convergence have been

noticed when using the MFBI algorithm (relative to non-conservative linear interpolation), and

hence the use of the MFBI algorithm is recommended.

The new CFD code has been validated against various block-structured or single block grids from

the commercial package FLUENT for a variety of test cases. It has been found that essentially the

same solution is obtained for both the codes for the cases considered. Any very minor differences

that were observed have been attributed to slight differences in the numerics between the two codes.

Tests involving the overset method have been carried out. It is found that continuous smooth

solutions over an overset interface can be obtained via the use of linear interpolation for all variables,

even if the grids are fairly coarse. It is, however, noted that the overlap should be minimised in order

361

to prevent unique solutions from developing in the overlap region due to differences in truncation

error between the grids.

Validations have also been carried out against experimental data for a variety of different flows.

For the backward facing step flow considered in Chapter 7 it is seen that the predicted reattachment

length and profiles of mean streamwise velocity are in close agreement with the experimental findings.

This case saw one major advantage of an overset formulation relative to block-structured grids;

namely that high aspect ratio cells away from the walls can be avoided with an overset formulation,

a feat that is not easy to achieve with a block structured grid.

This theme continues into Chapter 8 where the flow over a multi-element airfoil has been con-

sidered. In previously reported block structured grids of the same geometry, it is seen that high

aspect ratio cells propagate in into the core flow the cross-stream direction. These additional cells,

coupled with the numerical instabilities that such high aspect ratio cells bring, mean that a block

structured arrangement is not particularly well suited to the considered geometry. This, in addition

to the not insubstantial domain decomposition that is required in order to generate block structured

grids, makes the overset method particularly attractive for the simulation of flows over multi-element

airfoils. The benefits of the overset method are further compounded if one uses efficient Cartesian

grids to fill the off-body portion of the domain (provided the flow solver is coded to take advantage

of such a situation).

The flow through a pipe bend and the flow through a branching artery have also both been

considered. The grid zipping algorithm of Reference [53] has been applied in a novel way to the

implementation of a bulk pressure correction over overset grids. The method was originally conceived

for the computation of force coefficients over overset grids (i.e. as a postprocessing tool), where the

cells in the overlap region require special treatment in order not to count the contribution from the

overlap twice. Here, the original method is used to enforce global mass conservation in internal

flows (a second order approximation to global mass conservation is applied). The use of the zipping

algorithm enables the computation of the flow through the branching artery without the triangular

prism cells at the centre of the pipe that would occur if using a single block to discretise each branch

(as is typically the method employed by other authors). The correct flow division ratio can be

inferred from the good agreement between computational and experimental data.

The branching artery flow also saw the use of a collar grid being applied. This additional grid

was deemed of paramount importance to the present author, since without it the intersection area

362

between the two artery branches will appear different depending on which branch the underlying cells

belong to. This is due to the poor discrete approximation to the physical geometry that results from

the cells not conforming to the interface. Such collar grids have not been used in previous studies

of a bifurcation geometry (to this author’s knowledge). As such, previous results will by necessity

have shown unique solutions on the different grids in the overlap region (although the extent of this

is unreported, such a situation is unavoidable if the effective intersection area is different for each

branch).

The final test case considered is that of the flow over a wing-body junction. In this case the

benefits of the use of additional overset grids in order to apply a mesh refinement over the wake

are highlighted. The additional domain complexity that a wing-fuselage junction or a full aircraft

configuration would bring is also alluded to, and in such situations it is noted that the overset method

would provide a powerful option in domain decomposition. The flow over a simpler geometry is

considered due to the availability of experimental data, however, the extension of the overset method

to the more complex case is straightforward (if a little tedious). Even for the simple geometry,

the method provides advantages in the form of efficient Cartesian solutions over the majority of

the domain, in addition to avoiding the significant cell skewing and high aspect ratios that are

typically found for a block-structured arrangement of the same geometry. The agreement between

computation and experiment for the wing body junction flow is broadly satisfactory (with any

discrepancy typically being due to inadequacies of the turbulence closure employed, and is broadly

in line with other reported findings when using block-structured grids).

11.1 Future Work

There is much scope for future work. For example, the implementation of more advanced turbulence

models within the code should improve predictions for the turbulent test cases considered. A wall

function capability could also prove to be a very attractive addition to the present code by allowing

the use of a smaller size computational mesh for the turbulent flow simulations.

The present code has reached an upper limit in terms of the number of cells that can be practically

analysed on a single CPU core. In order to address even more geometrically complex configurations

than those presented so far (such as a full aircraft for example), a parallel version of the code would

be all but necessary. This extension would render a whole host of additional test cases accessible.

363

Another useful extension would be to develop a time dependent solver. The extension of the over-

set CFD code developed here to time-varying geometries is straightforward in concept (no changes

need be made to the overset algorithms of Chapter 5, only the underlying flow solver needs to be

modified). The additional capabilities that such an improvement would bring are numerous. Flows

involving moving boundaries could be investigated with ease without the need to regenerate meshes

between time-steps. Only the hole-cutter needs to be reinvoked - a fast procedure. Simulations

involving grids that move relative to one another would then be a simple addition, thereby opening

the way for many complex moving systems such as rotor stator systems or piston engines.

By undertaking these three primary extensions, a general parallel overset capability will have

been developed which can be used to analyse a very wide variety of different flows. More case-specific

future work could include the implementation of a non-Newtonian model for the fluid’s viscosity for

the artery flow. It would be interesting to test the extent to which the results differ under the

assumption of Newtonian fluid behaviour.

The addition of heat transfer capabilities would be a very useful addition as there are many

engineering problems involving heat transfer (or driven by heat transfer) which also involve very

complex geometries. One such example is the buoyancy driven flow of oil through transformer

windings currently under investigation within the author’s group [99].

Finally, a code involving both the immersed boundary method described in Chapter 2, as well as

the overset algorithm of Chapter 5, could provide even greater geometric flexibility. The immersed

boundary method is well suited to elastic walls (although rigid walls can also be approximated),

and hence could prove particularly useful for advancing the biomedical simulations presented in this

thesis.

Thus concludes an investigation into the use of the overset grid method for complex geometrical

configurations.

364

Bibliography

[1] H.S. Tang, S. Casey Jones, and F. Sotiropoulos. An overset-grid method for 3D unsteady

incompressible flows. J. of Computat. Phys., 191(2):567–600, 2003.

[2] BE Launder and BI Sharma. Application of the energy-dissipation model of turbulence to the

calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1(2):131–138, 1974.

[3] L.H. Thomas. Elliptic problems in linear difference equations over a network, Watson Sci.

Comput. Lab. Rept., Columbia University, New York, 1949.

[4] J.A. Benek, J.L. Steger, and F.C. Dougherty. A flexible grid embedding technique with appli-

cation to the Euler equations. AIAA Journal, pages 373–382, Jul 1983.

[5] JA Benek, JL Steger, FC Dougherty, and PG Buning. Chimera. A Grid-Embedding Technique.

1986.

[6] W.D. Henshaw. A fourth-order accurate method for the incompressible Navier-Stokes equations

on overlapping grids. Journal of Computational Physics, 113(1):13–25, 1994.

[7] P.D. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock

Waves. Society for Industrial Mathematics, 1973.

[8] C.J. Freitas and S.R. Runnels. Simulation of fluid–structure interaction using patched-overset

grids. Journal of Fluids and Structures, 13(2):191–207, 1999.

[9] P. Fast and M. J. Shelley. A moving overset grid method for interface dynamics applied to

non-Newtonian Hele-Shaw flow. J. Comput. Phys., 195:117–142, 2004.

365

[10] E. Basso and J.L.F. Azevedo. Three-dimensional viscous flow simulations over the VLS using

overset grids. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26:438–

445, 2004.

[11] B. Chung, P.C. Johnson, and A.S. Popel. Application of Chimera grid to modelling cell motion

and aggregation in a narrow tube. Int. J. Numer. Methods Fluids, 53:105–28, 2007.

[12] Z.J. Wang. A Conservative Interface Algorithm for Moving Chimera (Overlapped) Grids. In-

ternational Journal of Computational Fluid Dynamics, 10(3):255–265, 1998.

[13] L. Ge, F. Sotiropoulos, et al. 3d unsteady rans modeling of complex hydraulic engineering flows.

i: Numerical model. Journal of Hydraulic Engineering, 131:800, 2005.

[14] L. Ge, S.O. Lee, F. Sotiropoulos, T. Sturm, et al. 3d unsteady rans modeling of complex

hydraulic engineering flows. ii: Model validation and flow physics. Journal of Hydraulic Engi-

neering, 131:809, 2005.

[15] M.S. Liou and K.H. Kao. Progress in Grid Generation: From Chimera to DRAGON Grids.

NASA TM, 209458, 1994.

[16] Y. Zheng, M.S. Liou, and K.C. Civinskas. Development of three-dimensional DRAGON grid

technology. NASA TM, 209458, 1999.

[17] Z.J. Wang. A fully conservative interface algorithm for overlapped grids. J. Comput. Phys.,

122:96–106, 1995.

[18] P.L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput.

Phys., 135:250–258, 1997.

[19] M.J. Berger. On conservation at grid interfaces. SIAM J. Numer. Anal, 24(5):967–984, 1987.

[20] G. Chesshire and WD Henshaw. A Scheme for Conservative Interpolation on Overlapping Grids.

SIAM Journal on Scientific Computing, 15:819, 1994.

[21] X.K.S. Gang. Assessment of an interface conservative algorithm mfbi in a chimera grid flow

solver for multi-element airfoils. In Proceedings of the World Congress on Engineering, volume 2.

Citeseer, 2009.

366

[22] C.S. Peskin. Flow patterns around heart valves. In Proceedings of the Third International

Conference on Numerical Methods in Fluid Mechanics, Lecture Notes in Physics, volume 19,

1973.

[23] C.S. Peskin. Numerical analysis of blood flow in the heart. J. Comput. Phys, 25(3):220–252,

1977.

[24] R. Mittal and G. Iaccarino. Immersed boundary methods. 2005.

[25] J.M. Stockie and B.R. Wetton. Analysis of stiffness in the immersed boundary method and

implications for time-stepping schemes. Journal of Computational Physics, 154(1):41–64, 1999.

[26] G. Kalitzin and G. Iaccarino. Toward immersed boundary simulation of high Reynolds number

flows. CTR Annual Research Briefs, pages 369–378, 2003.

[27] G. Yun, H. Choi, and D. Kim. Turbulent flow past a sphere at Re= 3700 and 10,000. Physics

of Fluids, 15, 2003.

[28] HJ Kim and PA Durbin. Observations of the frequencies in a sphere wake and of drag increase

by acoustic excitation. Physics of fluids, 31:3260, 1988.

[29] H. Sakamoto and H. Haniu. A study on vortex shedding from spheres in a uniform flow. ASME,

Transactions, Journal of Fluids Engineering, 112:386–392, 1990.

[30] G. Constantinescu and K. Squires. Numerical investigations of flow over a sphere in the sub-

critical and supercritical regimes. Physics of Fluids, 16:1449, 2004.

[31] R. Mittal, V. Seshadri, SE Sarma, and HS Udaykumar. Computational modeling of fluidic

micro-handling processes. In 5th Int. Conf. Modeling and Simulation of Microsystems, San

Juan, PR, 2002.

[32] L.J. Fauci and A. McDonald. Sperm motility in the presence of boundaries. Bulletin of math-

ematical biology, 57(5):679–699, 1995.

[33] H. Schlichting, K. Gersten, E. Krause, K. Mayes, and H. Oertel. Boundary-layer theory. Springer

Verlag, 2000.

[34] S. Chen and G.D. Doolen. Lattice Boltzmann method for fluid flows. Annual Review of Fluid

Mechanics, 30(1):329, 2003.

367

[35] R.A. Fine and F.J. Millero. Compressibility of water as a function of temperature and pressure.

The Journal of Chemical Physics, 59:5529, 1973.

[36] J. H. Ferziger and M. Perić. Computational methods for fluid dynamics. Springer, Berlin, 1999.

[37] BP Leonard. A stable and accurate convective modelling procedure based on quadratic upstream

interpolation. Computer methods in applied mechanics and engineering, 19(1):59–98, 1979.

[38] F.S. Lien and M.A. Leschziner. Upstream monotonic interpolation for scalar transport with

application to complex turbulent flows. Int. J. Numer. Methods Fluids, 19:527–548, 1994.

[39] H.K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics: The

Finite Volume Method, chapter 7. Prentice Hall, 2007.

[40] S.V. Patankar. Numerical heat transfer and fluid flow. MAC Graw Hill, 1980.

[41] S.V. Patankar and D.B. Spalding. A Calculation Procedure for Heat, Mass and Momentum

transfer in three Dimensional Parabolic Flows. Numerical Prediction of Flow, Heat Transfer,

Turbulence, and Combustion: Selected Works of Professor D. Brian Spalding, 1983.

[42] C.M. Rhie and W.L. Chow. Numerical Study of the Turbulent Flow Past an Airfoil with Trailing

Edge Separation. AIAA Journal, 21(11):1525–1532, 1983.

[43] L. Prandtl. Essentials of fluid dynamics. Blackie, 1952.

[44] D.C. Wilcox. Turbulence modeling for CFD. 1998.

[45] K.Y. Chien. Predictions of channel and boundary-layer flows with a low-Reynolds-number

turbulence model. AIAA journal, 20(1):33–38, 1982.

[46] MA Leschziner. Modelling turbulent separated flow in the context of aerodynamic applications.

Fluid dynamics research, 38(2-3):174–210, 2006.

[47] K. Abe, T. Kondoh, and Y. Nagano. A new turbulence model for predicting fluid flow and heat

transfer in separating and reattaching flows–ii. thermal field calculations. International journal

of heat and mass transfer, 38(8):1467–1481, 1995.

[48] BE Launder. On the computation of convective heat transfer in complex turbulent flows.

Journal of heat transfer, 110:1112, 1988.

368

[49] S. Poroseva and G. Iaccarino. Simulating separated flows using the k-ε model. Center for

Turbulence Research Annual Research Briefs, 383, 2001.

[50] C. Yap. Turbulent heat and momentum transfer in recirculating and impinging flows. PhD

thesis, University of Manchester, 1987.

[51] H. Iacovides and M. Raisee. Recent progress in the computation of flow and heat transfer

in internal cooling passages of turbine blades. International Journal of Heat and Fluid Flow,

20(3):320–328, 1999.

[52] AN Kolmogorov. A refinement of previous hypotheses concerning the local structure of turbu-

lence in a viscous incompressible fluid at high Reynolds number. Journal of Fluid Mechanics

Digital Archive, 13(01):82–85, 2006.

[53] W.M. Chan and P.G. Buning. Zipper grids for force and moment computation on overset grids.

AIAA journal, 1995.

[54] G. Chesshire and W.D. Henshaw. Composite overlapping meshes for the solution of partial

differential equations. Journal of Computational Physics, 90(1):1–64, 1990.

[55] J. Gerlach. Accelerated convergence in Newton’s method. SIAM Rev, 36:272–276, 1994.

[56] J. Bonet and J. Peraire. An alternating digital tree (ADT) algorithm for 3D geometric search-

ing and intersection problems. International Journal for Numerical Methods in Engineering,

31(1):1–17, 1991.

[57] KE Barret and RJ Tiddy. Pseudo-recursive FORTRAN. Advances in engineering software,

21(1):17–20, 1994.

[58] Fuat Gürcan. Streamline topologies in stokes flow within lid-driven cavities. Theoretical and

Computational Fluid Dynamics, 17:19–30, 2003. 10.1007/s00162-003-0095-z.

[59] P.M. Gresho and R.L. Sani. On pressure boundary conditions for the incompressible Navier-

Stokes equations. International Journal for Numerical Methods in Fluids (ISSN 0271-2091), 7,

1987.

[60] KB Chun and HJ Sung. Control of turbulent separated flow over a backward-facing step by

local forcing. Experiments in Fluids, 21(6):417–426, 1996.

369

[61] P. Momeni. Modelling the effect of pulsation on flow and heat transfer in turbulent seperated

and reattaching flows. PhD thesis, University of Manchester, 2008.

[62] P. Momeni T.J. Craft, H. Iacovides. Convective Heat Transfer in Pulsed Separated Flows. In

UK National Heat Transfer Conference, 2007.

[63] D. Adair and WC Horne. Turbulent separated flow over and downstream of a two-element

airfoil. Experiments in Fluids, 7(8):531–541, 1989.

[64] G. Iaccarino and PA Durbin. Application of the k-ε-v2 model to multi-component airfoils. In

Proceedings of the Summer Program, page 23, 1996.

[65] C.L. Rumsey and T.B. Gatski. Recent turbulence model advances applied to multielement

airfoil computations. Journal of aircraft, 38(5):904–910, 2001.

[66] W. Rodi and G. Scheuerer. Scrutinizing the k-epsilon-model under adverse pressure gradient

conditions. In 4th Symposium on Turbulent Shear Flows, volume 1, page 2, 1984.

[67] N. Shahcheraghi, HA Dwyer, AY Cheer, AI Barakat, and T. Rutaganira. Unsteady and three-

dimensional simulation of blood flow in the human aortic arch. Journal of biomechanical engi-

neering, 124:378, 2002.

[68] AY Cheer, HA Dwyer, AI Barakat, E. Sy, and M. Bice. Computational study of the effect of

geometric and flow parameters on the steady flow field at the rabbit aorto-celiac bifurcation.

BIORHEOLOGY-OXFORD-, 35:415–436, 1998.

[69] M. Rowe. Measurements and computations of flow in pipe bends. Journal of Fluid Mechanics,

43(04):771–783, 1970.

[70] MM Enayet, MM Gibson, A. Taylor, and M. Yianneskis. Laser-doppler measurements of laminar

and turbulent flow in a pipe bend. International Journal of Heat and Fluid Flow, 3(4):213–219,

1982.

[71] S.W. Jones, O.M. Thomas, and H. Aref. Chaotic advection by laminar flow in a twisted pipe.

Journal of Fluid Mechanics, 209(1):335–357, 1989.

[72] F. Rütten, W. Schröder, and M. Meinke. Large-eddy simulation of low frequency oscillations

of the dean vortices in turbulent pipe bend flows. Physics of Fluids, 17:035107, 2005.

370

[73] S.V. Patankar, VS Pratap, and DB Spalding. Prediction of turbulent flow in curved pipes.

Journal of Fluid Mechanics, 67(03):583–595, 1975.

[74] J. Azzola, JAC Humphrey, H. Iacovides, and BE Launder. Developing turbulent flow in a

u-bend of circular cross-section: measurement and computation. Journal of fluids engineering,

108:214, 1986.

[75] RH Kufahl and ME Clark. A circle of willis simulation using distensible vessels and pulsatile

flow. Journal of biomechanical engineering, 107:112, 1985.

[76] M. Schüler, F. Zehnder, B. Weigand, J. von Wolfersdorf, and S.O. Neumann. The effect of

turning vanes on pressure loss and heat transfer of a ribbed rectangular two-pass internal

cooling channel. Journal of Turbomachinery, 133:021017, 2011.

[77] PHM Bovendeerd, F.N. Vosse, A. Steenhoven, and G. Vossers. Steady entry flow in a curved

pipe. Journal of fluid mechanics, 177:233–46, 1987.

[78] D.L. Fry. Acute vascular endothelial changes associated with increased blood velocity gradients.

Circulation Research, 22(2):165, 1968.

[79] CG Caro, JM Fitz-Gerald, and RC Schroter. Atheroma and arterial wall shear observation,

correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Pro-

ceedings of the Royal Society of London. Series B. Biological Sciences, 177(1046):109, 1971.

[80] BK Bharadvaj, RF Mabon, and DP Giddens. Steady flow in a model of the human carotid

bifurcation. Part I–flow visualization. Journal of Biomechanics, 15(5):349–362, 1982.

[81] K. Masuda, N. Watarai, R. Nakamoto, Y. Miyamoto, K. Kim, and T. Chiba. Study to prevent

the density of microcapsules from diffusing in blood vessel by local acoustic radiation force. In

Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference

of the IEEE, pages 402–405. IEEE, 2010.

[82] H.S. Kim, H.S. Chong, A. Nanda, J.O. Park, S.H. Moon, H.M. Lee, H.J. Kim, C.K. Park,

Y.S. Park, S.H. Lee, et al. Vascular Injury in Thoracolumbar Spinal Surgeries and Role of

Angiography in Early Diagnosis and Management. Journal of Spinal Disorders & Techniques,

23(6):418, 2010.

371

[83] E.W. Merrill and G.A. Pelletier. Viscosity of human blood: transition from Newtonian to

non-Newtonian. Journal of Applied Physiology, 23(2):178, 1967.

[84] BK Bharadvaj, RF Mabon, and DP Giddens. Steady flow in a model of the human carotid bifur-

cation. Part II–Laser-Doppler anemometer measurements. Journal of Biomechanics, 15(5):363–

365, 1982.

[85] T. Kim, AY Cheer, and HA Dwyer. A simulated dye method for flow visualization with a

computational model for blood flow. Journal of biomechanics, 37(8):1125–1136, 2004.

[86] PG Buning, IT Chiu, S. Obayashi, YM Rizk, and JL Steger. Numerical simulation of the

integrated space shuttle vehicle in ascent. In AIAA Atmospheric Flight Mechanics Conference,

Minneapolis, MN, pages 265–283, 1988.

[87] J.J. Chattot and Y. Wang. Improved treatment of intersecting bodies with the chimera method

and validation with a simple and fast flow solver. Computers & fluids, 27(5-6):721–740, 1998.

[88] A. Jameson and TJ Baker. Improvements to the aircraft euler method. In AIAA, Aerospace

Sciences Meeting, 25 th, Reno, NV, page 1987, 1987.

[89] W. DEVENPORT and R. SIMPSON. Time-dependent and time-averaged turbulence structure

near the nose of a wing-body junction. Journal of Fluid Mechanics, 210(1):23–55, 1990.

[90] J.L. Fleming, RL Simpson, JE Cowling, and WJ Devenport. An experimental study of a

turbulent wing-body junction and wake flow. Experiments in fluids, 14(5):366–378, 1993.

[91] RL Simpson, MC Rife, and WJ Devenport. An experimental study of the relationship between

velocity and pressure fluctuations in a wing-body junction. Virginia polytechnic inst. and state

univ. Blacksburg dept. of Aerospace and Ocean engineering, 1992.

[92] W.J. Devenport. An experimental investigation of the flow past an idealized wing-body junction.

Technical report, DTIC Document, 1990.

[93] DD Apsley and MA Leschziner. Investigation of advanced turbulence models for the flow in a

generic wing-body junction. Flow, turbulence and combustion, 67(1):25–55, 2001.

[94] Y. Dubief and F. Delcayre. On coherent-vortex identification in turbulence. Journal of Turbu-

lence, 1(1):N11, 2000.

372

[95] PA Durbin. On the k-ε stagnation point anomaly. International journal of heat and fluid flow,

17(1):89–90, 1996.

[96] G. Medic and PA Durbin. Toward improved prediction of heat transfer on turbine blades.

Journal of turbomachinery, 124:187, 2002.

[97] BE Launder, GJ Reece, and W. Rodi. Progress in the development of a reynolds-stress turbu-

lence closure. Journal of Fluid Mechanics, 68(03):537–566, 1975.

[98] MM Gibson and BE Launder. Ground effects on pressure fluctuations in the atmospheric

boundary layer. Journal of Fluid Mechanics, 86(03):491–511, 1978.

[99] A. Skillen, A. Revell, H. Iacovides, and W. Wu. Numerical prediction of local hot-spot phe-

nomena in transformer windings. Applied Thermal Engineering, 2011.

373

