1,904 research outputs found

    Contamination

    Get PDF
    Soil contamination occurs when substances are added to soil, resulting in increases in concentrations above background or reference levels. Pollution may follow from contamination when contaminants are present in amounts that are detrimental to soil quality and become harmful to the environment or human health. Contamination can occur via a range of pathways including direct application to land and indirect application from atmospheric deposition. Contamination was identified by SEPA (2001) as a significant threat to soil quality in many parts of Scotland. Towers et al. (2006) identified four principal contamination threats to Scottish soils: acidification; eutrophication; metals; and pesticides. The Scottish Soil Framework (Scottish Government, 2009) set out the potential impact of these threats on the principal soil functions. Severe contamination can lead to “contaminated land” [as defined under Part IIA of the Environmental Protection Act (1990)]. This report does not consider the state and impacts of contaminated land on the wider environment in detail. For further information on contaminated land, see ‘Dealing with Land Contamination in Scotland’ (SEPA, 2009). This chapter considers the causes of soil contamination and their environmental and socio-economic impacts before going on to discuss the status of, and trends in, levels of contaminants in Scotland’s soils

    Grain and plant protein types fed to weaned piglets influence the apparent digestibility of carbohydrates and crude protein when measured at the terminal ileum

    Get PDF
    Diets based on cooked white rice fed to weaned piglets have a higher apparent ileal digestibility of starch than diets based on wheat (Pluske et al., 2007). The diets based on cooked white rice have used predominately animal sources of protein, however in Europe these are banned or excluded by retailer's specifications (except for milk proteins), and plant proteins are widely used instead. This study examined the interactive effects of cereal types and plant protein types on the apparent ileal digestibility of protein and carbohydrates to test the proposition that suitable sources of plant protein could ensure high digestibility coefficients in the small intestine

    Effects of five years of frequent N additions, with or without acidity, on the growth and below-ground dynamics of a young Sitka spruce stand growing on an acid peat: implications for sustainability

    No full text
    International audienceA field manipulation study was established to demonstrate effects of simulated wet N and S deposition on a young (planted 1986) stand of Sitka spruce growing on a predominantly organic soil in an area of low (8?10 kg N ha-1 yr-1) background N deposition in the Scottish borders. From 1996, treatments (six) were applied to the canopies of ten-tree plots in each of four blocks. N was provided as NH4NO3, either with H2SO4 (pH 2.5) at 48 or 96 kg N ha-1 yr-1 inputs or without, at 48 kg N ha-1 yr-1 along with wet (rain water) and dry controls (scaffolding) and a S treatment (Na2SO4). Positive responses (+ >20% over 5 years) with respect to stem area increment were measured in response to N inputs, irrespective of whether acid was included. The positive response to N was not dose related and was achieved against falling base cation concentrations in the foliage, particularly with respect to K. The results suggest young trees are able to buffer the low nutrient levels and produce new growth when there is sufficient N. Inputs of 96 kg N ha-1 yr-1, in addition to ambient N inputs, on this site exceeded tree demand resulting in elevated foliar N, N2O losses and measurable soil water N. These excessive N inputs did not reduce stem area growth. Keywords: acid, canopy application, nitrogen, acid organic soil, simulated wet deposition, soil water, sulphur, young Sitka spruc

    High fat diet attenuates the anticontractile activity of aortic PVAT via a mechanism involving AMPK and reduced adiponectin secretion

    Get PDF
    Background and aim: Perivascular adipose tissue (PVAT) positively regulates vascular function through production of factors such as adiponectin but this effect is attenuated in obesity. The enzyme AMP-activated protein kinase (AMPK) is present in PVAT and is implicated in mediating the vascular effects of adiponectin. In this study, we investigated the effect of an obesogenic high fat diet (HFD) on aortic PVAT and whether any changes involved AMPK. Methods: Wild type Sv129 (WT) and AMPKα1 knockout (KO) mice aged 8 weeks were fed normal diet (ND) or HFD (42% kcal fat) for 12 weeks. Adiponectin production by PVAT was assessed by ELISA and AMPK expression studied using immunoblotting. Macrophages in PVAT were identified using immunohistochemistry and markers of M1 and M2 macrophage subtypes evaluated using real time-qPCR. Vascular responses were measured in endothelium-denuded aortic rings with or without attached PVAT. Carotid wire injury was performed and PVAT inflammation studied 7 days later. Key results: Aortic PVAT from KO and WT mice was morphologically indistinct but KO PVAT had more infiltrating macrophages. HFD caused an increased infiltration of macrophages in WT mice with increased expression of the M1 macrophage markers Nos2 and Il1b and the M2 marker Chil3. In WT mice, HFD reduced the anticontractile effect of PVAT as well as reducing adiponectin secretion and AMPK phosphorylation. PVAT from KO mice on ND had significantly reduced adiponectin secretion and no anticontractile effect and feeding HFD did not alter this. Wire injury induced macrophage infiltration of PVAT but did not cause further infiltration in KO mice. Conclusions: High-fat diet causes an inflammatory infiltrate, reduced AMPK phosphorylation and attenuates the anticontractile effect of murine aortic PVAT. Mice lacking AMPKα1 phenocopy many of the changes in wild-type aortic PVAT after HFD, suggesting that AMPK may protect the vessel against deleterious changes in response to HFD

    Topology and Homoclinic Trajectories of Discrete Dynamical Systems

    Get PDF
    We show that nontrivial homoclinic trajectories of a family of discrete, nonautonomous, asymptotically hyperbolic systems parametrized by a circle bifurcate from a stationary solution if the asymptotic stable bundles Es(+{\infty}) and Es(-{\infty}) of the linearization at the stationary branch are twisted in different ways.Comment: 19 pages, canceled the appendix (Properties of the index bundle) in order to avoid any text overlap with arXiv:1005.207

    Spin-photon entanglement with direct photon emission in the telecom C-band

    Full text link
    The ever-evolving demands for computational power and for a securely connected world dictate the development of quantum networks where entanglement is distributed between connected parties. Solid-state quantum emitters in the telecom C-band are a promising platform for quantum communication applications due to the minimal absorption of photons at these wavelengths, "on-demand" generation of single photon flying qubits, and ease of integration with existing network infrastructure. Here, we use an InAs/InP quantum dot to implement an optically active spin-qubit, based on a negatively charged exciton where the electron spin degeneracy is lifted using a Voigt magnetic field. We investigate the coherent interactions of the spin-qubit system under resonant excitation, demonstrating high fidelity spin initialisation and coherent control using picosecond pulses. We further use these tools to measure the coherence of a single, undisturbed electron spin in our system. Finally, we report the first demonstration of spin-photon entanglement in a solid-state system capable of direct emission into the telecom C-band.Comment: 19 pages (including references), 5 figure

    Nitrous oxide emission sources from a mixed livestock farm

    Get PDF
    The primary aim of this study was to identify and compare the most significant sources of nitrous oxide (N2O) emissions from soils within a typical mixed livestock farm in Scotland. The farm area can be considered as representative of agricultural soils in this region where outdoor grazing forms an important part of the animal husbandry. A high temporal resolution dynamic chamber method was used to measure N2O fluxes from the featureless, general areas of the arable and pasture fields (general) and from those areas where large nitrogen additions are highly likely, such as animal feeding areas, manure heaps, animal barns (features). Individual N2O flux measurements varied by four orders of magnitude, with values ranging from −5.5 to 80,000 μg N2O-N m−2 h−1. The log-normal distribution of the fluxes required the use of more complex statistics to quantify uncertainty, including a Bayesian approach which provided a robust and transparent method for “upscaling” i.e. translating small-scale observations to larger scales, with appropriate propagation of uncertainty. Mean N2O fluxes associated with the features were typically one to four orders of magnitude larger than those measured on the general areas of the arable and pasture fields. During warmer months, when widespread grazing takes place across the farm, the smaller N2O fluxes of the largest area source – the general field (99.7% of total area) – dominated the overall N2O emissions. The contribution from the features should still be considered important, given that up to 91% of the fluxes may come from only 0.3% of the area under certain conditions, especially in the colder winter months when manure heaps and animal barns continue to produce emissions while soils reach temperatures unfavourable for microbial activity (<5 °C)

    Suppression of nuclear spin diffusion at a GaAs/AlGaAs interface measured with a single quantum dot nano-probe

    Full text link
    Nuclear spin polarization dynamics are measured in optically pumped individual GaAs/AlGaAs interface quantum dots by detecting the time-dependence of the Overhauser shift in photoluminescence (PL) spectra. Long nuclear polarization decay times of ~ 1 minute have been found indicating inefficient nuclear spin diffusion from the GaAs dot into the surrounding AlGaAs matrix in externally applied magnetic field. A spin diffusion coefficient two orders lower than that previously found in bulk GaAs is deduced.Comment: 5 pages, 3 figures, submitted to Phys Rev

    Giant Gravitons, BPS bounds and Noncommutativity

    Get PDF
    It has been recently suggested that gravitons moving in AdSm×SnAdS_m \times S^n spacetimes along the SnS^n blow up into spherical (n2)(n-2) branes whose radius increases with increasing angular momentum. This leads to an upper bound on the angular momentum, thus ``explaining'' the stringy exclusion principle. We show that this bound is present only for states which saturate a BPS-like condition involving the energy EE and angular momentum JJ, EJ/RE \geq J/R, where RR is the radius of SnS^n. Restriction of motion to such states lead to a noncommutativity of the coordinates on SnS^n. As an example of motions which do not obey the exclusion principle bound, we show that there are finite action instanton configurations interpolating between two possible BPS states. We suggest that this is consistent with the proposal that there is an effective description in terms of supergravity defined on noncommutative spaces and noncommutativity arises here because of imposing supersymmetry.Comment: 15 pages, harvmac, corrected some typo
    corecore