505 research outputs found

    Quantum effective action from the AdS/CFT correspondence

    Get PDF
    We obtain an Einstein metric of constant negative curvature given an arbitrary boundary metric in three dimensions, and a conformally flat one given an arbitrary conformally flat boundary metric in other dimensions. In order to compute the on-shell value of the gravitational action for these solutions, we propose to integrate the radial coordinate from the boundary till a critical value where the bulk volume element vanishes. The result, which is a functional of the boundary metric, provides a sector of the quantum effective action common to all conformal field theories that have a gravitational description. We verify that the so-defined boundary effective action is conformally invariant in odd (boundary) dimensions and has the correct conformal anomaly in even (boundary) dimensions. In three dimensions and for arbitrary static boundary metric the bulk metric takes a rather simple form. We explicitly carry out the computation of the corresponding effective action and find that it equals the non-local Polyakov action.Comment: 12 pages, latex, no figures; v2: minor improvements and two references adde

    Branes in the plane wave background with gauge field condensates

    Full text link
    Supersymmetric branes in the plane wave background with additional constant magnetic fields are studied from the world-sheet point of view. It is found that in contradistinction to flat space, boundary condensates on some maximally supersymmetric branes necessarily break at least some supersymmetries. The maximally supersymmetric cases with condensates are shown to be in one to one correspondence with the previously classified class II branes.Comment: LaTeX, 31 pages, no figures; v2: references added, some typos correcte

    The Holographic Universe

    Get PDF
    We present a holographic description of four-dimensional single-scalar inflationary universes in terms of a three-dimensional quantum field theory. The holographic description correctly reproduces standard inflationary predictions in their regime of applicability. In the opposite case, wherein gravity is strongly coupled at early times, we propose a holographic description in terms of perturbative QFT and present models capable of satisfying the current observational constraints while exhibiting a phenomenology distinct from standard inflation. This provides a qualitatively new method for generating a nearly scale-invariant spectrum of primordial cosmological perturbations.Comment: 20 pages, 5 figs; extended version of arXiv:0907.5542 including background material and detailed derivations. To appear in Proceedings of 1st Mediterranean Conference on Classical and Quantum Gravit

    Gravity in Warped Compactifications and the Holographic Stress Tensor

    Get PDF
    We study gravitational aspects of Brane-World scenarios. We show that the bulk Einstein equations together with the junction condition imply that the induced metric on the brane satisfies the full non-linear Einstein equations with a specific effective stress energy tensor. This result holds for any value of the bulk cosmological constant. The analysis is done by either placing the brane close to infinity or by considering the local geometry near the brane. In the case that the bulk spacetime is asymptotically AdS, we show that the effective stress energy tensor is equal to the sum of the stress energy tensor of matter localized on the brane and of the holographic stress energy tensor appearing in the AdS/CFT duality. In addition, there are specific higher-curvature corrections to Einstein's equations. We analyze in detail the case of asymptotically flat spacetime. We obtain asymptotic solutions of Einstein's equations and show that the effective Newton's constant on the brane depends on the position of the brane

    Supersymmetric hydrodynamics from the AdS/CFT correspondence

    Full text link
    We compute holographically the dispersion relation for a hydrodynamic mode of fluctuation (the phonino) of the density of supersymmetry current in N = 4 SYM at strong coupling. The mode appears as a pole at low frequency and momentum in the correlator of supercurrents. It has a wave-like propagation, and we find its speed and coefficient of attenuation.Comment: 17 page

    Kaluza-Klein Holography

    Full text link
    We construct a holographic map between asymptotically AdS_5 x S^5 solutions of 10d supergravity and vacuum expectation values of gauge invariant operators of the dual QFT. The ingredients that enter in the construction are (i) gauge invariant variables so that the KK reduction is independent of any choice of gauge fixing; (ii) the non-linear KK reduction map from 10 to 5 dimensions (constructed perturbatively in the number of fields); (iii) application of holographic renormalization. A non-trivial role in the last step is played by extremal couplings. This map allows one to reliably compute vevs of operators dual to any KK fields. As an application we consider a Coulomb branch solution and compute the first two non-trivial vevs, involving operators of dimension 2 and 4, and reproduce the field theory result, in agreement with non-renormalization theorems. This constitutes the first quantitative test of the gravity/gauge theory duality away from the conformal point involving a vev of an operator dual to a KK field (which is not one of the gauged supergravity fields).Comment: 47 pages, v2: minor improvements, version to appear in JHE

    The volume of causal diamonds, asymptotically de Sitter space-times and irreversibility

    Full text link
    In this note we prove that the volume of a causal diamond associated with an inertial observer in asymptotically de Sitter 4-dimensional space-time is monotonically increasing function of cosmological time. The asymptotic value of the volume is that of in maximally symmetric de Sitter space-time. The monotonic property of the volume is checked in two cases: in vacuum and in the presence of a massless scalar field. In vacuum, the volume flow (with respect to cosmological time) asymptotically vanishes if and only if future space-like infinity is 3-manifold of constant curvature. The volume flow thus represents irreversibility of asymptotic evolution in spacetimes with positive cosmological constant.Comment: 15 pages, no figures; v.2: conjecture 1 on p. 11 made more precise; version published in jhe

    Anatomy of bubbling solutions

    Full text link
    We present a comprehensive analysis of holography for the bubbling solutions of Lin-Lunin-Maldacena. These solutions are uniquely determined by a coloring of a 2-plane, which was argued to correspond to the phase space of free fermions. We show that in general this phase space distribution does not determine fully the 1/2 BPS state of N=4 SYM that the gravitational solution is dual to, but it does determine it enough so that vevs of all single trace 1/2 BPS operators in that state are uniquely determined to leading order in the large N limit. These are precisely the vevs encoded in the asymptotics of the LLM solutions. We extract these vevs for operators up to dimension 4 using holographic renormalization and KK holography and show exact agreement with the field theory expressions.Comment: 67 pages, 6 figures; v2: typos corrected, refs added; v3: expanded explanations, more typos correcte

    Entropy from AdS(3)/CFT(2)

    Full text link
    We parametrize the (2+1)-dimensional AdS space and the BTZ black hole with Fefferman-Graham coordinates starting from the AdS boundary. We consider various boundary metrics: Rindler, static de Sitter and FRW. In each case, we compute the holographic stress-energy tensor of the dual CFT and confirm that it has the correct form, including the effects of the conformal anomaly. We find that the Fefferman-Graham parametrization also spans a second copy of the AdS space, including a second boundary. For the boundary metrics we consider, the Fefferman-Graham coordinates do not cover the whole AdS space. We propose that the length of the line delimiting the excluded region at a given time can be identified with the entropy of the dual CFT on a background determined by the boundary metric. For Rindler and de Sitter backgrounds our proposal reproduces the expected entropy. For a FRW background it produces a generalization of the Cardy formula that takes into account the vacuum energy related to the expansion.Comment: major revision with several clarifications and corrections, 22 page

    Real-time gauge/gravity duality: Prescription, Renormalization and Examples

    Full text link
    We present a comprehensive analysis of the prescription we recently put forward for the computation of real-time correlation functions using gauge/gravity duality. The prescription is valid for any holographic supergravity background and it naturally maps initial and final data in the bulk to initial and final states or density matrices in the field theory. We show in detail how the technique of holographic renormalization can be applied in this setting and we provide numerous illustrative examples, including the computation of time-ordered, Wightman and retarded 2-point functions in Poincare and global coordinates, thermal correlators and higher-point functions.Comment: 85 pages, 13 figures; v2: added comments and reference
    corecore