2,293 research outputs found

    Testing and evaluation of Dacron parachute elements after exposure to ethylene oxide and simulated package loading and heat cycle

    Get PDF
    Testing Dacron parachute components and assemblies by exposure to ethylene oxide sterilization, simulated package loading, and heat cycl

    Fluid-loaded metasurfaces

    Full text link
    We consider wave propagation along fluid-loaded structures which take the form of an elastic plate augmented by an array of resonators forming a metasurface, that is, a surface structured with sub-wavelength resonators. Such surfaces have had considerable recent success for the control of wave propagation in electromagnetism and acoustics, by combining the vision of sub-wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. We explore one aspect of recent interest in this field: graded metasurfaces, but within the context of fluid-loaded structures. Graded metasurfaces allow for selective spatial frequency separation and are often referred to as exhibiting rainbow trapping. Experiments, and theory, have been developed for acoustic, electromagnetic, and even elastic, rainbow devices but this has not been approached for fluid-loaded structures that support surface waves coupled with the acoustic field in a bulk fluid. This surface wave, coupled with the fluid, can be used to create an additional effect by designing a metasurface to mode convert from surface to bulk waves. We demonstrate that sub-wavelength control is possible and that one can create both rainbow trapping and mode conversion phenomena for a fluid-loaded elastic plate model.Comment: 13 pages, 10 figure

    Childhood and the politics of scale: Descaling children's geographies?

    Get PDF
    This is the post-print version of the final published paper that is available from the link below. Copyright @ 2008 SAGE Publications.The past decade has witnessed a resurgence of interest in the geographies of children's lives, and particularly in engaging the voices and activities of young people in geographical research. Much of this growing body of scholarship is characterized by a very parochial locus of interest — the neighbourhood, playground, shopping mall or journey to school. In this paper I explore some of the roots of children's geographies' preoccupation with the micro-scale and argue that it limits the relevance of research, both politically and to other areas of geography. In order to widen the scope of children's geographies, some scholars have engaged with developments in the theorization of scale. I present these arguments but also point to their limitations. As an alternative, I propose that the notion of a flat ontology might help overcome some difficulties around scalar thinking, and provide a useful means of conceptualizing sociospatiality in material and non-hierarchical terms. Bringing together flat ontology and work in children's geographies on embodied subjectivity, I argue that it is important to examine the nature and limits of children's spaces of perception and action. While these spaces are not simply `local', they seldom afford children opportunities to comment on, or intervene in, the events, processes and decisions that shape their own lives. The implications for the substance and method of children's geographies and for geographical work on scale are considered

    Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal and cubic phases of methylammonium lead iodide

    Get PDF
    The hybrid halide perovskite CH3NH3PbI3 exhibits a complex structural behaviour, with successive transitions between orthorhombic, tetragonal and cubic polymorphs at ca. 165 K and 327 K. Herein we report first-principles lattice dynamics (phonon spectrum) for each phase of CH3NH3PbI3. The equilibrium structures compare well to solutions of temperature-dependent powder neutron diffraction. By following the normal modes we calculate infrared and Raman intensities of the vibrations, and compare them to the measurement of a single crystal where the Raman laser is controlled to avoid degradation of the sample. Despite a clear separation in energy between low frequency modes associated with the inorganic PbI3 network and high-frequency modes of the organic CH3NH3+ cation, significant coupling between them is found, which emphasises the interplay between molecular orientation and the corner-sharing octahedral networks in the structural transformations. Soft modes are found at the boundary of the Brillouin zone of the cubic phase, consistent with displacive instabilities and anharmonicity involving tilting of the PbI6 octahedra around room temperature.Comment: 9 pages, 4 figure

    Gamma ray monitoring of a AGN and galactic black hole candidates by the Compton Gamma Ray Observatory

    Get PDF
    The Compton Gamma-Ray Observatory's Burst and Transient Source Experiment (BATSE) has a powerful capability to provide nearly uninterrupted monitoring in the 25 keV-10 MeV range of both active galactic nuclei (AGN) and galactic black hole candidates (GBHC) such as Cygnus X-1, using the occultation of cosmic sources by the Earth. Since the Crab is detected by the BATSE Large Area Detectors with roughly 25(sigma) significance in the 15-125 keV range in a single rise or set, a variation by a factor of two of a source having one-tenth the strength of Cygnus X-1 should be detectable within a day. Methods of modeling the background are discussed which will increase the accuracy, sensitivity, and reliability of the results beyond those obtainable from a linear background fit with a single rise or set discontinuity

    New Limits to the Infrared Background: Bounds on Radiative Neutrino Decay and on Contributions of Very Massive Objects to the Dark Matter Problem

    Get PDF
    From considering the effect of γ-γ interactions on recently observed TeV gamma-ray spectra, improved limits are set to the density of extragalactic infrared photons which are robust and essentially model independent. The resulting limits are more than an order of magnitude more restrictive than direct observations in the 0.025–0.3 eV regime. These limits are used to improve constraints on radiative neutrino decay in the mass range above 0.05 eV and to rule out very massive objects as providing the dark matter needed to explain galaxy rotation curves. Lower bounds on the maximum distance which TeV gamma rays may probe are also derived

    The Most Luminous z~9-10 Galaxy Candidates yet Found: The Luminosity Function, Cosmic Star-Formation Rate, and the First Mass Density Estimate at 500 Myr

    Full text link
    [abridged] We present the discovery of four surprisingly bright (H_160 ~ 26 - 27 mag AB) galaxy candidates at z~9-10 in the complete HST CANDELS WFC3/IR GOODS-N imaging data, doubling the number of z~10 galaxy candidates that are known, just ~500 Myr after the Big Bang. Two similarly bright sources are also detected in a systematic re-analysis of the GOODS-S data set. Three of the four galaxies in GOODS-N are significantly detected at 4.5-6.2sigma in the very deep Spitzer/IRAC 4.5 micron data, as is one of the GOODS-S candidates. Furthermore, the brightest of our candidates (at z=10.2+-0.4) is robustly detected also at 3.6 micron (6.9sigma), revealing a flat UV spectral energy distribution with a slope beta=-2.0+-0.2, consistent with demonstrated trends with luminosity at high redshift. The abundance of such luminous candidates suggests that the luminosity function evolves more significantly in phi_* than in L_* at z>~8 with a higher number density of bright sources than previously expected. Despite the discovery of these luminous candidates, the cosmic star formation rate density for galaxies with SFR >0.7 M_sun/yr shows an order-of-magnitude increase in only 170 Myr from z ~ 10 to z ~ 8, consistent with previous results. Based on the IRAC detections, we derive galaxy stellar masses at z~10, finding that these luminous objects are typically 10^9 M_sun. The cosmic stellar mass density at z~10 is log10 rho_* = 4.7^+0.5_-0.8 M_sun Mpc^-3 for galaxies brighter than M_UV~-18. The remarkable brightness, and hence luminosity, of these z~9-10 candidates highlights the opportunity for deep spectroscopy to determine their redshift and nature, demonstrates the value of additional search fields covering a wider area to understand star-formation in the very early universe, and highlights the opportunities for JWST to map the buildup of galaxies at redshifts much earlier than z~10.Comment: 20 pages, 12 figures, changed to match resubmitted version to Ap

    Stellar Kinematics of z ~ 2 Galaxies and the Inside-out Growth of Quiescent Galaxies

    Get PDF
    Using stellar kinematics measurements, we investigate the growth of massive, quiescent galaxies from z ~{} 2 to today. We present X-Shooter spectra from the UV to NIR and dynamical mass measurements of five quiescent massive ({gt}1011^{11} M ⊙_{⊙}) galaxies at z ~{} 2. This triples the sample of z {gt} 1.5 galaxies with well-constrained ({deltadelta}{σσ} {lt} 100 km s−1^{-1}) velocity dispersion measurements. From spectral population synthesis modeling we find that these galaxies have stellar ages that range from 0.5 to 2 Gyr, with no signs of ongoing star formation. We measure velocity dispersions (290-450 km s−1^{-1}) from stellar absorption lines and find that they are 1.6-2.1 times higher than those of galaxies in the Sloan Digital Sky Survey at the same mass. Sizes are measured using GALFIT from Hubble Space Telescope Wide Field Camera 3 H 160_{160} and UDS K-band images. The dynamical masses correspond well to the spectral energy distribution based stellar masses, with dynamical masses that are ~{}15% higher. We find that M ∗_{*}/M dyn_{dyn} may decrease slightly with time, which could reflect the increase of the dark matter fraction within an increasing effective radius. We combine different stellar kinematic studies from the literature and examine the structural evolution from z ~{} 2 to z ~{} 0: we confirm that at fixed dynamical mass, the effective radius increases by a factor of ~{}2.8, and the velocity dispersion decreases by a factor of ~{}1.7. The mass density within one effective radius decreases by a factor of ~{}20, while within a fixed physical radius (1 kpc) it decreases only mildly (factor of ~{}2). When we allow for an evolving mass limit by selecting a population of galaxies at fixed number density, a stronger size growth with time is found (factor of ~{}4), velocity dispersion decreases by a factor of ~{}1.4, and interestingly, the mass density within 1 kpc is consistent with no evolution. This finding suggests that massive quiescent galaxies at z ~{} 2 grow inside out, consistent with the expectations from minor mergers

    Development of control systems for space shuttle vehicles, volume 1

    Get PDF
    Control of winged two-stage space shuttle vehicles was investigated. Control requirements were determined and systems capable of meeting these requirements were synthesized. Control requirements unique to shuttles were identified. It is shown that these requirements can be satisfied by conventional control logics. Linear gain schedule controllers predominate. Actuator saturations require nonlinear compensation in some of the control systems
    • …
    corecore