223 research outputs found

    Proteolytic Cleavage and Activation of pro-Macrophage-Stimulating Protein and Upregulation of its Receptor in Tissue Injury

    Get PDF
    Macrophage stimulating protein (MSP) exists in blood as inactive pro-MSP. Cleavage yields active MSP, the ligand for a membrane receptor (RON) that is expressed on keratinocytes as well as macrophages. Because both cells have roles in tissue injury, we looked for active MSP and expressed RON in wounds. Concentration of pro-MSP + MSP in wound exudates was in the range for optimal activity. Western blot showed that MSP comprised about half the total, in contrast to less than 10% of the total in blood plasma. The presence of MSP was attributed to an exudate pro-MSP convertase that had an inhibitor profile consistent with a trypsin-like serine protease. Exudate evoked morphologic changes in macrophages in vitro like that of MSP. Removal of this activity by an anti-MSP column shows that exudate stimulation of macrophages is due to MSP. RON was infrequently detected in normal skin. RON protein was markedly upregulated in burn wound epidermis and accessory structures, in proliferating cells or differentiated cells, or both. RON was also detected on macrophages and capillaries. Tissue injury leads to cleavage of pro-MSP to MSP, which has potential to act on keratinocytes, macrophages, and capillaries, all components of the wound healing response

    On an asymptotic method for computing the modified energy for symplectic methods

    Get PDF
    We revisit an algorithm by Skeel et al. [5,16] for computing the modified, or shadow, energy associated with symplectic discretizations of Hamiltonian systems. We amend the algorithm to use Richardson extrapolation in order to obtain arbitrarily high order of accuracy. Error estimates show that the new method captures the exponentially small drift associated with such discretizations. Several numerical examples illustrate the theory

    Evaluation of Rehabilitation of Memory in Neurological Disabilities (ReMiND): a randomized controlled trial

    Get PDF
    OBJECTIVE:The evidence for the effectiveness of memory rehabilitation is inconclusive. The aim was to compare the effectiveness of two group memory rehabilitation programmes with a self-help group control. DESIGN:Single-blind randomized controlled trial. PARTICIPANTS:Participants with memory problems following traumatic brain injury, stroke or multiple sclerosis were recruited from community settings. INTERVENTIONS:Participants were randomly allocated, in cohorts of four, to compensation or restitution group treatment programmes or a self-help group control. All programmes were manual-based and comprised two individual and ten weekly group sessions. MAIN MEASURES:Memory functions, mood, and activities of daily living were assessed at baseline and five and seven months after randomization. RESULTS:There were 72 participants (mean age 47.7, SD 10.2 years; 32 men). There was no significant effect of treatment on the Everyday Memory Questionnaire (P = 0.97). At seven months the mean scores were comparable (restitution 36.6, compensation 41.0, self-help 44.1). However, there was a significant difference between groups on the Internal Memory Aids Questionnaire (P = 0.002). The compensation and restitution groups each used significantly more internal memory aids than the self-help group (P 0.05). CONCLUSIONS:There results show few statistically significant effects of either compensation or restitution memory group treatment as compared with a self-help group control. Further randomized trials of memory rehabilitation are needed

    Construction of a Mean Square Error Adaptive Euler--Maruyama Method with Applications in Multilevel Monte Carlo

    Full text link
    A formal mean square error expansion (MSE) is derived for Euler--Maruyama numerical solutions of stochastic differential equations (SDE). The error expansion is used to construct a pathwise a posteriori adaptive time stepping Euler--Maruyama method for numerical solutions of SDE, and the resulting method is incorporated into a multilevel Monte Carlo (MLMC) method for weak approximations of SDE. This gives an efficient MSE adaptive MLMC method for handling a number of low-regularity approximation problems. In low-regularity numerical example problems, the developed adaptive MLMC method is shown to outperform the uniform time stepping MLMC method by orders of magnitude, producing output whose error with high probability is bounded by TOL>0 at the near-optimal MLMC cost rate O(TOL^{-2}log(TOL)^4).Comment: 43 pages, 12 figure

    Rehabilitation of memory following brain injury (ReMemBrIn): study protocol for a randomised controlled trial

    Get PDF
    Background Impairments of memory are commonly reported by people with traumatic brain injuries (TBI). Such deficits are persistent, debilitating, and can severely impact quality of life. Currently, many do not routinely receive follow-up appointments for residual memory problems following discharge. Methods/Design This is a multi-centre, randomised controlled trial investigating the clinical and cost-effectiveness of a group-based memory rehabilitation programme. Three hundred and twelve people with a traumatic brain injury will be randomised from four centres. Participants will be eligible if they had a traumatic brain injury more than 3 months prior to recruitment, have memory problems, are 18 to 69 years of age, are able to travel to one of our centres and attend group sessions, and are able to give informed consent. Participants will be randomised in clusters of 4 to 6 to the group rehabilitation intervention or to usual care. Intervention groups will receive 10 weekly sessions of a manualised memory rehabilitation programme, which has been developed in previous pilot studies. The intervention will include restitution strategies to retrain impaired memory functions and compensation strategies to enable participants to cope with their memory problems. All participants will receive a follow-up postal questionnaire and an assessment by a research assistant at 6 and 12 months post-randomisation. The primary outcome is the Everyday Memory Questionnaire at 6 months. Secondary outcomes include the Rivermead Behavioural Memory Test-3, General Health Questionnaire-30, health related quality of life, cost-effectiveness analysis determined by the EQ-5D and a service use questionnaire, individual goal attainment, European Brain Injury Questionnaire (patient and relative versions), and the Everyday Memory Questionnaire-relative version. The primary analysis will be based on intention to treat. A mixed-model regression analysis of the Everyday Memory Questionnaire at 6 months will be used to estimate the effect of the group memory rehabilitation programme. Discussion The study will hopefully provide robust evidence regarding the clinical and cost-effectiveness of a group-based memory rehabilitation intervention for civilians and military personnel following TBI. We discuss our decision-making regarding choice of outcome measures and control group, and the unique challenges to recruiting people with memory problems to trials

    Molecular Dynamics Simulations Suggest that Electrostatic Funnel Directs Binding of Tamiflu to Influenza N1 Neuraminidases

    Get PDF
    Oseltamivir (Tamiflu) is currently the frontline antiviral drug employed to fight the flu virus in infected individuals by inhibiting neuraminidase, a flu protein responsible for the release of newly synthesized virions. However, oseltamivir resistance has become a critical problem due to rapid mutation of the flu virus. Unfortunately, how mutations actually confer drug resistance is not well understood. In this study, we employ molecular dynamics (MD) and steered molecular dynamics (SMD) simulations, as well as graphics processing unit (GPU)-accelerated electrostatic mapping, to uncover the mechanism behind point mutation induced oseltamivir-resistance in both H5N1 “avian” and H1N1pdm “swine” flu N1-subtype neuraminidases. The simulations reveal an electrostatic binding funnel that plays a key role in directing oseltamivir into and out of its binding site on N1 neuraminidase. The binding pathway for oseltamivir suggests how mutations disrupt drug binding and how new drugs may circumvent the resistance mechanisms

    A Quantum-mechanical Approach for Constrained Macromolecular Chains

    Full text link
    Many approaches to three-dimensional constrained macromolecular chains at thermal equilibrium, at about room temperatures, are based upon constrained Classical Hamiltonian Dynamics (cCHDa). Quantum-mechanical approaches (QMa) have also been treated by different researchers for decades. QMa address a fundamental issue (constraints versus the uncertainty principle) and are versatile: they also yield classical descriptions (which may not coincide with those from cCHDa, although they may agree for certain relevant quantities). Open issues include whether QMa have enough practical consequences which differ from and/or improve those from cCHDa. We shall treat cCHDa briefly and deal with QMa, by outlining old approaches and focusing on recent ones.Comment: Expands review published in The European Physical Journal (Special Topics) Vol. 200, pp. 225-258 (2011
    corecore