13 research outputs found

    Disturbed lipid profile in common variable immunodeficiency – a pathogenic loop of inflammation and metabolic disturbances

    Get PDF
    The relationship between metabolic and inflammatory pathways play a pathogenic role in various cardiometabolic disorders and is potentially also involved in the pathogenesis of other disorders such as cancer, autoimmunity and infectious diseases. Common variable immunodeficiency (CVID) is the most common primary immunodeficiency in adults, characterized by increased frequency of airway infections with capsulated bacteria. In addition, a large proportion of CVID patients have autoimmune and inflammatory complications associated with systemic inflammation. We summarize the evidence that support a role of a bidirectional pathogenic interaction between inflammation and metabolic disturbances in CVID. This include low levels and function of high-density lipoprotein (HDL), high levels of triglycerides (TG) and its major lipoprotein very low-density lipoprotein (VLDL), and an unfavorable fatty acid (FA) profile. The dysregulation of TG, VLDL and FA were linked to disturbed gut microbiota profile, and TG and VLDL levels were strongly associated with lipopolysaccharides (LPS), a marker of gut leakage in blood. Of note, the disturbed lipid profile in CVID did not include total cholesterol levels or high low-density lipoprotein levels. Furthermore, increased VLDL and TG levels in blood were not associated with diet, high body mass index and liver steatosis, suggesting a different phenotype than in patients with traditional cardiovascular risk such as metabolic syndrome. We hypothesize that these metabolic disturbances are linked to inflammation in a bidirectional manner with disturbed gut microbiota as a potential contributing factor.publishedVersio

    Increased Plasma Levels of Triglyceride-Enriched Lipoproteins Associate with Systemic Inflammation, Lipopolysaccharides, and Gut Dysbiosis in Common Variable Immunodeficiency

    Get PDF
    Purpose: Triglycerides (TG) and their major transport lipoprotein in the circulation (VLDL) appear to be related to inflammation. Patients with common variable immunodeficiency (CVID) have inflammatory complications associated with gut microbial dysbiosis. We hypothesized that CVID patients have disturbed TG/VLDL profiles associated with these clinical characteristics. Methods: We measured plasma concentrations of TGs, inflammatory markers, and lipopolysaccharide (LPS) in 95 CVID patients and 28 healthy controls. Additionally, in 40 CVID patients, we explored plasma lipoprotein profiling, fatty acid, gut microbial dysbiosis, and diet. Results: TG levels were increased in CVID patients as compared to healthy controls (1.36 ± 0.53 mmol/l versus 1.08 ± 0.56 [mean, SD], respectively, P = 0.008), particularly in the clinical subgroup “Complications,” characterized by autoimmunity and organ-specific inflammation, compared to “Infection only” (1.41 mmol/l, 0.71[median, IQR] versus [1.02 mmol/l, 0.50], P = 0.021). Lipoprotein profile analyses showed increased levels of all sizes of VLDL particles in CVID patients compared to controls. TG levels correlated positively with CRP (rho = 0.256, P = 0.015), IL-6 (rho = 0.237, P = 0.021), IL-12 (rho = 0.265, P = 0.009), LPS (r = 0.654, P = 6.59 × 10−13), CVID-specific gut dysbiosis index (r = 0.315, P = 0.048), and inversely with a favorable fatty acid profile (docosahexaenoic acid [rho =  − 0.369, P = 0.021] and linoleic acid [rho =  − 0.375, P = 0.019]). TGs and VLDL lipids did not appear to be associated with diet and there were no differences in body mass index (BMI) between CVID patients and controls. Conclusion: We found increased plasma levels of TGs and all sizes of VLDL particles, which were associated with systemic inflammation, LPS, and gut dysbiosis in CVID, but not diet or BMI.publishedVersio

    Disturbed lipid profile in common variable immunodeficiency – a pathogenic loop of inflammation and metabolic disturbances

    Get PDF
    The relationship between metabolic and inflammatory pathways play a pathogenic role in various cardiometabolic disorders and is potentially also involved in the pathogenesis of other disorders such as cancer, autoimmunity and infectious diseases. Common variable immunodeficiency (CVID) is the most common primary immunodeficiency in adults, characterized by increased frequency of airway infections with capsulated bacteria. In addition, a large proportion of CVID patients have autoimmune and inflammatory complications associated with systemic inflammation. We summarize the evidence that support a role of a bidirectional pathogenic interaction between inflammation and metabolic disturbances in CVID. This include low levels and function of high-density lipoprotein (HDL), high levels of triglycerides (TG) and its major lipoprotein very low-density lipoprotein (VLDL), and an unfavorable fatty acid (FA) profile. The dysregulation of TG, VLDL and FA were linked to disturbed gut microbiota profile, and TG and VLDL levels were strongly associated with lipopolysaccharides (LPS), a marker of gut leakage in blood. Of note, the disturbed lipid profile in CVID did not include total cholesterol levels or high low-density lipoprotein levels. Furthermore, increased VLDL and TG levels in blood were not associated with diet, high body mass index and liver steatosis, suggesting a different phenotype than in patients with traditional cardiovascular risk such as metabolic syndrome. We hypothesize that these metabolic disturbances are linked to inflammation in a bidirectional manner with disturbed gut microbiota as a potential contributing factor

    Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice

    Get PDF
    Increasing evidence suggests that oxidative DNA damage accumulates in atherosclerosis. Recently, we showed that a genetic variant in the human DNA repair enzyme NEIL3 was associated with increased risk of myocardial infarction. Here, we explored the role of Neil3/NEIL3 in atherogenesis by both clinical and experimental approaches. Human carotid plaques revealed increased NEIL3 mRNA expression which significantly correlated with mRNA levels of the macrophage marker CD68. Apoe−/−Neil3−/− mice on high-fat diet showed accelerated plaque formation as compared to Apoe−/− mice, reflecting an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe−/−Neil3−/− mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage

    DNA glycosylase Neil3 regulates vascular smooth muscle cell biology during atherosclerosis development.

    Get PDF
    BACKGROUND AND AIMS: Atherogenesis involves a complex interaction between immune cells and lipids, processes greatly influenced by the vascular smooth muscle cell (VSMC) phenotype. The DNA glycosylase NEIL3 has previously been shown to have a role in atherogenesis, though whether this is due to its ability to repair DNA damage or to other non-canonical functions is not yet clear. Hereby, we investigate the role of NEIL3 in atherogenesis, specifically in VSMC phenotypic modulation, which is critical in plaque formation and stability. METHODS: Chow diet-fed atherosclerosis-prone Apoe-/- mice deficient in Neil3, and NEIL3-abrogated human primary aortic VSMCs were characterized by qPCR, and immunohistochemical and enzymatic-based assays; moreover, single-cell RNA sequencing, mRNA sequencing, and proteomics were used to map the molecular effects of Neil3/NEIL3 deficiency in the aortic VSMC phenotype. Furthermore, BrdU-based proliferation assays and Western blot were performed to elucidate the involvement of the Akt signaling pathway in the transdifferentiation of aortic VSMCs lacking Neil3/NEIL3. RESULTS: We show that Neil3 deficiency increases atherosclerotic plaque development without affecting systemic lipids. This observation was associated with a shift in VSMC phenotype towards a proliferating, lipid-accumulating and secretory macrophage-like cell phenotype, without changes in DNA damage. VSMC transdifferentiation in Neil3-deficient mice encompassed increased activity of the Akt signaling pathway, supported by cell experiments showing Akt-dependent proliferation in NEIL3-abrogated human primary aortic VSMCs. CONCLUSIONS: Our findings show that Neil3 deficiency promotes atherosclerosis development through non-canonical mechanisms affecting VSMC phenotype involving activation of the Akt signaling pathway

    "En norsk helsestasjon i India, Methodist Rural Public Health Care Center - et observasjonsstudium."

    Get PDF
    This thesis is an observation study of the work at a Norwegian Primary Health Care Center localized in a village in India. The health care work is organized by The Methodist Church of Norway but the main fiancial contributor is Norad. The aim of our task is to present what kind of health care work is being performed at the clinic and to disseminate our impression about the importance of this work for the local population. In November-December 2004 we spent five weeks in the Hathras and Aligarh district, which is an area localized in the northern part of India. Methodist Rural Public Health Care Center was establised in 1962 and includes three clinics in three different villages; Mursan, Beswan and Karhari. MPHC offers a range field of medical services in an area with a population of two million people. The matter of MPHC is to act on the community by performing both therapeutical and profylactical interventions. By focusing on a change of attitude in relation to women, sick people and the poor, MPHC also integrates these classes into the society. Other important issues of mind are education and enlightenment. Employment of local inhabitants in the program has lead to successful results. Since the establishment, the essential areas of health care have been gynecology, obstetrics, pediatrics and infection. The exchange of clinical information through telemedicine between Rikshospitalet and MPHC is a proof of MPHC`s power to renewal and potential for new achievements

    NEIL3-deficient bone marrow displays decreased hematopoietic capacity and reduced telomere length

    No full text
    Deficiency of NEIL3, a DNA repair enzyme, has significant impact on mouse physiology, including vascular biology and gut health, processes related to aging. Leukocyte telomere length (LTL) is suggested as a marker of biological aging, and shortened LTL is associated with increased risk of cardiovascular disease. NEIL3 has been shown to repair DNA damage in telomere regions in vitro. Herein, we explored the role of NEIL3 in telomere maintenance in vivo by studying bone marrow cells from atherosclerosis-prone NEIL3-deficient mice. We found shortened telomeres and decreased activity of the telomerase enzyme in bone marrow cells derived from Apoe−/−Neil3−/− as compared to Apoe−/− mice. Furthermore, Apoe−/−Neil3−/− mice had decreased leukocyte levels as compared to Apoe−/− mice, both in bone marrow and in peripheral blood. Finally, RNA sequencing of bone marrow cells from Apoe−/−Neil3−/− and Apoe−/− mice revealed different expression levels of genes involved in cell cycle regulation, cellular senescence and telomere protection. This study points to NEIL3 as a telomere-protecting protein in murine bone marrow in vivo

    Increased Levels of lectin-like oxidized low-density lipoprotein receptor-1 in ischemic stroke and transient ischemic attack

    No full text
    Background: Soluble lectin‐like oxidized low‐density lipoprotein receptor‐1 (sLOX‐1) has been shown to be increased in patients with acute ischemic stroke. Here, we evaluated plasma sLOX‐1 levels and vascular carotid plaque LOX‐1 (ie, OLR1) gene expression in patients with ischemic stroke and transient ischemic attack (TIA) with particular focus on their relation to time since symptom onset. Methods and Results: Plasma sLOX‐1 (n=232) and carotid plaque OLR1 gene expression (n=146) were evaluated in patients who were referred to evaluation for carotid endarterectomy, as well as in healthy control plasma (n=81). Patients were categorized according to presence of acute ischemic stroke or transient ischemic attack (n=35) ≤7 days, >7 days ≤3 months (n=90), >3 months (n=40), or no reported symptoms before study inclusion (n=67). Our major findings were the following: (1) Patients with carotid atherosclerosis had increased plasma sLOX‐1 levels as compared with controls. (2) Plaque OLR1 mRNA levels were increased in carotid plaques (n=146) compared with nonatherosclerotic vessels (ie, common iliac arteries of organ donors, n=10). (3) There were no differences in sLOX plasma levels or OLR1 gene expression when analyzed according to the time since relevant cerebral ischemic symptoms. (4) Also patients with severe carotid atherosclerosis without any previous ischemic events had raised sLOX‐1 levels. (5) Immunostaining showed colocalization between LOX‐1 and macrophages within the carotid plaques. (6) Also patients with acute stroke (within 7 days) caused by atrial fibrillation (n=22) had comparable raised sLOX‐1 levels. Conclusions: sLOX‐1 levels are elevated in patients with ischemic stroke and transient ischemic attack independent of cause and time since the ischemic event

    NEIL3-deficiency increases gut permeability and contributes to a pro-atherogenic metabolic phenotype

    No full text
    Abstract Atherosclerosis and its consequences cause considerable morbidity and mortality world-wide. We have previously shown that expression of the DNA glycosylase NEIL3 is regulated in human atherosclerotic plaques, and that NEIL3-deficiency enhances atherogenesis in Apoe −/− mice. Herein, we identified a time point prior to quantifiable differences in atherosclerosis between Apoe −/− Neil3 −/− mice and Apoe −/− mice. Mice at this age were selected to explore the metabolic and pathophysiological processes preceding extensive atherogenesis in NEIL3-deficient mice. Untargeted metabolomic analysis of young Apoe −/− Neil3 −/− mice revealed significant metabolic disturbances as compared to mice expressing NEIL3, particularly in metabolites dependent on the gut microbiota. 16S rRNA gene sequencing of fecal bacterial DNA indeed confirmed that the NEIL3-deficient mice had altered gut microbiota, as well as increased circulating levels of the bacterially derived molecule LPS. The mice were challenged with a FITC-conjugated dextran to explore gut permeability, which was significantly increased in the NEIL3-deficient mice. Further, immunohistochemistry showed increased levels of the proliferation marker Ki67 in the colonic epithelium of NEIL3-deficient mice, suggesting increased proliferation of intestinal cells and gut leakage. We suggest that these metabolic alterations serve as drivers of atherosclerosis in NEIL3-deficient mice

    NEIL3-deficiency increases gut permeability and contributes to a pro-atherogenic metabolic phenotype

    No full text
    Atherosclerosis and its consequences cause considerable morbidity and mortality world-wide. We have previously shown that expression of the DNA glycosylase NEIL3 is regulated in human atherosclerotic plaques, and that NEIL3-deficiency enhances atherogenesis in Apoe−/− mice. Herein, we identified a time point prior to quantifiable differences in atherosclerosis between Apoe−/−Neil3−/− mice and Apoe−/− mice. Mice at this age were selected to explore the metabolic and pathophysiological processes preceding extensive atherogenesis in NEIL3-deficient mice. Untargeted metabolomic analysis of young Apoe−/−Neil3−/− mice revealed significant metabolic disturbances as compared to mice expressing NEIL3, particularly in metabolites dependent on the gut microbiota. 16S rRNA gene sequencing of fecal bacterial DNA indeed confirmed that the NEIL3-deficient mice had altered gut microbiota, as well as increased circulating levels of the bacterially derived molecule LPS. The mice were challenged with a FITC-conjugated dextran to explore gut permeability, which was significantly increased in the NEIL3-deficient mice. Further, immunohistochemistry showed increased levels of the proliferation marker Ki67 in the colonic epithelium of NEIL3-deficient mice, suggesting increased proliferation of intestinal cells and gut leakage. We suggest that these metabolic alterations serve as drivers of atherosclerosis in NEIL3-deficient mice
    corecore