22 research outputs found

    A multidisciplinary study of 3-(β-d-glucopyranosyl)-5-substituted-1,2,4-triazole derivatives as glycogen phosphorylase inhibitors: Computation, synthesis, crystallography and kinetics reveal new potent inhibitors

    Get PDF
    3-(β-d-Glucopyranosyl)-5-substituted-1,2,4-triazoles have been revealed as an effective scaffold for the development of potent glycogen phosphorylase (GP) inhibitors but with the potency very sensitive to the nature of the alkyl/aryl 5-substituent (Kun et al., Eur. J. Med. Chem. 2014, 76, 567). For a training set of these ligands, quantum mechanics-polarized ligand docking (QM-PLD) demonstrated good potential to identify larger differences in potencies (predictive index PI = 0.82) and potent inhibitors with K 's < 10 μM (AU-ROC = 0.86). Accordingly, in silico screening of 2335 new analogues exploiting the ZINC docking database was performed and nine predicted candidates selected for synthesis. The compounds were prepared in O-perbenzoylated forms by either ring transformation of 5-β-d-glucopyranosyl tetrazole by N-benzyl-arenecarboximidoyl chlorides, ring closure of C-(β-d-glucopyranosyl)formamidrazone with aroyl chlorides, or that of N-(β-d-glucopyranosylcarbonyl)arenethiocarboxamides by hydrazine, followed by deprotections. Kinetics experiments against rabbit muscle GPb (rmGPb) and human liver GPa (hlGPa) revealed five compounds as potent low μM inhibitors with three of these on the submicromolar range for rmGPa. X-ray crystallographic analysis sourced the potency to a combination of favorable interactions from the 1,2,4-triazole and suitable aryl substituents in the GP catalytic site. The compounds also revealed promising calculated pharmacokinetic profiles. [Abstract copyright: Copyright © 2018 Elsevier Masson SAS. All rights reserved.

    Cytoskeletal protein kinases: titin and its relations in mechanosensing

    Get PDF
    Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca2+–calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other “MLCKs”, is not Ca2+–calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation

    Structural and functional studies of the response regulator HupR.

    No full text
    HupR is a response regulator that controls the synthesis of the membrane-bound [NiFe]hydrogenase of the photosynthetic bacterium Rhodobacter capsulatus. The protein belongs to the NtrC subfamily of response regulators and is the second protein of a two-component system. We have crystallized the full-length protein HupR in the unphosphorylated state in two dimensions using the lipid monolayer technique. The 3D structure of negatively stained HupR was calculated to a resolution of approximately 23 A from tilted electron microscope images. HupR crystallizes as a dimer, and forms an elongated V-shaped structure with extended arms. The dimensions of the dimer are about 80 A length, 40 A width and 85 A thick. The HupR monomer consists of three domains, N-terminal receiver domain, central domain and C-terminal DNA-binding domain. We have fitted the known 3D structure of the central domain from NtrC1 Aquifex aeolicus protein into our 3D model; we propose that contact between the dimers is through the central domain. The N-terminal domain is in contact with the lipid monolayer and is situated on the top of the V-shaped structure. The central domain alone has been expressed and purified; it forms a pentamer in solution and lacks ATPase activity

    Structural basis of the synergistic inhibition of glycogen phosphorylase a by caffeine and a potential antidiabetic drug

    No full text
    Journal URL: http://www.sciencedirect.com/science/journal/0003986

    A new allosteric site in glycogen phosphorylase b as a target for drug interactions

    No full text
    Journal URL: http://www.sciencedirect.com/science/journal/0969212

    The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition.

    No full text
    The structure of a truncated form of the gamma-subunit of phosphorylase kinase (PHKgammat) has been solved in a ternary complex with a non-hydrolysable ATP analogue (adenylyl imidodiphosphate, AMPPNP) and a heptapeptide substrate related in sequence to both the natural substrate and to the optimal peptide substrate. Kinetic characterization of the phosphotransfer reaction confirms the peptide to be a good substrate, and the structure allows identification of key features responsible for its high affinity. Unexpectedly, the substrate peptide forms a short anti-parallel beta-sheet with the kinase activation segment, the region which in other kinases plays an important role in regulation of enzyme activity. This anchoring of the main chain of the substrate peptide at a fixed distance from the gamma-phosphate of ATP explains the selectivity of PHK for serine/threonine over tyrosine as a substrate. The catalytic core of PHK exists as a dimer in crystals of the ternary complex, and the relevance of this phenomenon to its in vivo recognition of dimeric glycogen phosphorylase b is considered

    Novel diarylamides and diarylureas with N-substitution dependent activity against medulloblastoma

    No full text
    Medulloblastoma – highly aggressive and heterogeneous tumours of the cerebellum – account for 15–20% of all childhood brain tumours, and are the most common high-grade childhood embryonal tumour of the central nervous system. Herein, potent in vitro anticancer activity against two established medulloblastoma cell lines of the sonic hedgehog subgroup, namely DAOY (p53 mutant) and ONS-76 (p53 wild type), has been achieved. A number of first-generation diarylamides and diarylureas were evaluated and activity is likely to be, in-part, conformation-dependent. The most active compound from this first-generation set of compounds, 1-naphthyl derivative 4b, was selected and a second-generation of compounds were optimised and tested for activity against the medulloblastoma cell lines. This process resulted in drug-like compounds with up to sixty times the activity (sub-micromolar) of the first-generation – thus providing potent new leads for further study. © 202

    Evidence for Novel Action at the Cell-Binding Site of Human Angiogenin Revealed by Heteronuclear NMR Spectroscopy, in silico and in vivo Studies

    No full text
    A member of the ribonuclease A superfamily, human angiogenin (hAng) is a potent angiogenic factor. Heteronuclear NMR spectroscopy combined with induced-fit docking revealed a dual binding mode for the most antiangiogenic compound of a series of ribofuranosyl pyrimidine nucleosides that strongly inhibit hAng's angiogenic activity in vivo. While modeling suggests the potential for simultaneous binding of the inhibitors at the active and cell-binding sites, NMR studies indicate greater affinity for the cell-binding site than for the active site. Additionally, molecular dynamics simulations at 100 ns confirmed the stability of binding at the cell-binding site with the predicted protein–ligand interactions, in excellent agreement with the NMR data. This is the first time that a nucleoside inhibitor is reported to completely inhibit the angiogenic activity of hAng in vivo by exerting dual inhibitory activity on hAng, blocking both the entrance of hAng into the cell and its ribonucleolytic activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinhei

    1-(3-Deoxy-3-fluoro-beta-D-glucopyranosyl) pyrimidine derivatives as inhibitors of glycogen phosphorylase b: Kinetic, crystallographic and modelling studies.

    No full text
    Design of inhibitors of glycogen phosphorylase (GP) with pharmaceutical applications in improving glycaemic control in type 2 diabetes is a promising therapeutic strategy. The catalytic site of muscle glycogen phosphorylase b (GPb) has been probed with five deoxy-fluro-glucose derivatives. These inhibitors had fluorine instead of hydroxyl at the 3' position of the glucose moiety and a variety of pyrimidine derivatives at the 1' position. The best of this carbohydrate-based family of five inhibitors displays a K(i) value of 46muM. To elucidate the mechanism of inhibition for these compounds, the crystal structures of GPb in complex with each ligand were determined and refined to high resolution. The structures demonstrated that the inhibitors bind preferentially at the catalytic site and promote the less active T state conformation of the enzyme by making several favorable contacts with residues of the 280s loop. Fluorine is engaged in hydrogen bond interactions but does not improve glucose potency. The pyrimidine groups are located between residues 284-286 of the 280s loop, Ala383 of the 380s loop, and His341 of the beta-pocket. These interactions appear important in stabilizing the inactive quaternary T state of the enzyme. As a follow up to recent computations performed on beta-d-glucose pyrimidine derivatives, tautomeric forms of ligands 1-5 were considered as potential binding states. Using Glide-XP docking and QM/MM calculations, the ligands 2 and 5 are predicted to bind in different tautomeric states in their respective GPb complexes. Also, using alpha-d-glucose as a benchmark model, a series of substitutions for glucose -OH at the 3' (equatorial) position were investigated for their potential to improve the binding affinity of glucose-based GPb catalytic site inhibitors. Glide-XP and quantum mechanics polarized ligand (QPLD-SP/XP) docking calculations revealed favorable binding at this position to be dominated by hydrogen bond contributions; none of the substitutions (including fluorine) out-performed the native -OH substituent which can act both as hydrogen bond donor and acceptor. The structural analyses of these compounds can be exploited towards the development of better inhibitors
    corecore