46 research outputs found

    A Comparison of Levels of Select Minerals in Scalp Hair Samples with Estimated Dietary Intakes of These Minerals in Women of Reproductive Age

    Get PDF
    The objective of this study was to evaluate daily intake of minerals and concentrations of minerals in hair in women of reproductive age. The study included 77 menstruating women, aged 35.9 ± 9.7 years. Subjects were divided into three groups according to age. All women were healthy. Hair samples were taken from several points of the occipital scalp. The content of minerals in hair samples was determined by flame atomic absorption spectrometry. Dietary intake of the analysed minerals was assayed on the basis of dietary intake interviews from three preceding days and evaluated using the dietetic computer programme. It was shown that calcium and iron daily intake by the women was below the recommended value. Only few women had low concentrations (below reference values) of magnesium, copper and zinc in hair. Statistically significant differences were shown between age groups. Generally, the concentrations of minerals in hair in the younger (19–30 years) and the older women (41–50 years) were higher than in hair of middle-aged women (31–40 years). The content of calcium, magnesium, iron and zinc in daily diets of women correlated inversely with copper level in their hair. Food products with good bioavailability of iron and calcium should be recommended for women of childbearing age in all age groups

    Hair Trace Element and Electrolyte Content in Women with Natural and In Vitro Fertilization-Induced Pregnancy

    Get PDF
    The objective of the present study was to perform comparative analysis of hair trace element content in women with natural and in vitro fertilization (IVF)-induced pregnancy. Hair trace element content in 33 women with IVF-induced pregnancy and 99 age- and body mass index-matched control pregnant women (natural pregnancy) was assessed using inductively coupled plasma mass spectrometry. The results demonstrated that IVF-pregnant women are characterized by significantly lower hair levels of Cu, Fe, Si, Zn, Ca, Mg, and Ba at p < 0.05 or lower. Comparison of the individual levels with the national reference values demonstrated higher incidence of Fe and Cu deficiency in IVF-pregnant women in comparison to that of the controls. IVF pregnancy was also associated with higher hair As levels (p < 0.05). Multiple regression analysis revealed a significant interrelation between IVF pregnancy and hair Cu, Fe, Si, and As content. Hair Cu levels were also influenced by vitamin/mineral supplementation and the number of pregnancies, whereas hair Zn content was dependent on prepregnancy anthropometric parameters. In turn, planning of pregnancy had a significant impact on Mg levels in scalp hair. Generally, the obtained data demonstrate an elevated risk of copper, iron, zinc, calcium, and magnesium deficiency and arsenic overload in women with IVF-induced pregnancy. The obtained data indicate the necessity of regular monitoring of micronutrient status in IVF-pregnant women in order to prevent potential deleterious effects of altered mineral homeostasis

    Assessment of copper, iron, zinc and manganese status and speciation in patients with Parkinson's disease: A pilot study

    No full text
    Background: The objective of this pilot study was to assess iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) status (hair, serum, and urine) and speciation (serum) in Parkinson's disease (PD) patients. Methods: A pilot study involving a total of 27 subjects (13 PD patients, 14 controls) was performed. Serum, urine, and hair metal content was assessed using ICP-MS. Speciation analysis of Cu, Zn, Fe, and Mn was performed using a hybrid HPLC-ICP-MS system. Results: Group comparisons did not reveal any significant group difference in serum Cu, Zn, Fe, and Mn total metal level between PD patients and controls. Speciation analysis revealed a significant decrease in Cu/ceruloplasmin copper in association with elevation of low-molecular weight species (amino acids)-bound copper. It is proposed that in PD, binding of Cu(II) ions to ceruloplasmin is reduced and free copper ions coordinate with low molecular weight ligands. The level of Mn-albumin complexes in PD patients was more than 4-fold higher as compared to the respective value in the control group. The observed difference may be considered as a marker of redistribution between high and low molecular weight ligands. Conclusions: Metal speciation is significantly affected in serum of PD-patients. These findings are indicative of the potential role of metal metabolism and PD pathogenesis, although the exact mechanisms of such associations require further detailed studies. © 201

    Comparative effects of meso-2,3-dimercaptosuccinic acid, monensin and salinomycin on the concentrations of cadmium and some essential elements in skeletal muscles of Cd-exposed mice

    No full text
    Cadmium (Cd) is an environmental pollutant shown to induce multi organ dysfunction. In this study we present novel data about the effects of meso-2,3-dimercaptosuccinic acid (DMSA), monensin and salinomycin on the concentration of Cd in skeletal muscles of mice exposed to Cd (II) acetate treatment for 14 days. The impact of Cd and the chelating agents on the endogenous concentrations of calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), phosphorous (P), selenium (Se) and zinc (Zn) was also investigated. Subacute exposure of mice to Cd (II) acetate resulted in a significant accumulation of the toxic metal ion in the skeletal muscles compared to the untreated controls. Salinomycin most effectively mobilized Cd from the muscles compared to DMSA and monensin. The Cd exposure and the tested chelating agents did not significantly alter the endogenous concentrations of the selected essential elements in mouse muscles. The presented results confirmed that among the tested chelating agents salinomycin is superior as a potential antidote to Cd poisoning. © 2018 Elsevier Gmb

    Aluminium levels in hair and urine are associated with overweight and obesity in a non-occupationally exposed population

    No full text
    Background: Data on the association between aluminium (Al) exposure and obesity and/or metabolic syndrome are insufficient. The objective of the present study was to investigate the association between hair and urine Al levels and obesity. Methods: A total of 206 lean and 205 obese non-occupationally exposed subjects (30–50 y.o.) were enrolled in the study. Hair and urine Al levels were assessed with ICP-MS. Laboratory quality control was performed using the certified reference materials of human hair, plasma, and urine. Results: Hair and urinary Al levels in obese subjects were significantly higher by 31% and 46% compared to the control levels, respectively. The presence of hypertension (41% cases), atherosclerosis (8%), type 2 diabetes mellitus (10%), and non-alcoholic fatty liver disease (NAFLD) (53%) in obese patients were not associated with Al levels in the studied subjects. An overall multiple regression model established urinary Al levels (β = 0.395; p < 0.001), hypertension (β = 0.331; p < 0.001) and NAFLD (β = 0.257; p = 0.003) were significantly and directly associated with BMI. Hair Al levels were found to be border-line significantly related to BMI after adjustment for several confounders (β = −0.205; p = 0.054). Conclusions: Aluminium body burden is associated with increased body weight, although the causal relationship between Al exposure and obesity is not clear. Both clinical and experimental studies are required to further investigate the impact of Al exposure on metabolic parameters in obesity and especially direct effects of Al in adipose tissue. © 2019 Elsevier Gmb

    Comparative effects of meso-2,3-dimercaptosuccinic acid, monensin and salinomycin on the concentrations of cadmium and some essential elements in skeletal muscles of Cd-exposed mice

    No full text
    Cadmium (Cd) is an environmental pollutant shown to induce multi organ dysfunction. In this study we present novel data about the effects of meso-2,3-dimercaptosuccinic acid (DMSA), monensin and salinomycin on the concentration of Cd in skeletal muscles of mice exposed to Cd (II) acetate treatment for 14 days. The impact of Cd and the chelating agents on the endogenous concentrations of calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), phosphorous (P), selenium (Se) and zinc (Zn) was also investigated. Subacute exposure of mice to Cd (II) acetate resulted in a significant accumulation of the toxic metal ion in the skeletal muscles compared to the untreated controls. Salinomycin most effectively mobilized Cd from the muscles compared to DMSA and monensin. The Cd exposure and the tested chelating agents did not significantly alter the endogenous concentrations of the selected essential elements in mouse muscles. The presented results confirmed that among the tested chelating agents salinomycin is superior as a potential antidote to Cd poisoning. © 2018 Elsevier Gmb

    Organotins in obesity and associated metabolic disturbances

    No full text
    The objective of the present study was to review the mechanisms of organotin-induced adipogenesis, obesity, and associated metabolic disturbances. Peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα) activation is considered as the key mechanism of organotin-induced adipogenesis. Particularly, organotin exposure results in increased adipogenesis both in cell and animal models. Moreover, transgenerational inheritance of organotin-induced obese phenotype was demonstrated in vivo. At the same time, the existing data demonstrate that organotin compounds (OTCs) induces aberrant expression of PPARγ-targeted genes, resulting in altered of adipokine, glucose transporter, proinflammatory cytokines levels, and lipid and carbohydrate metabolism. The latter is generally characterized by hyperglycemia and insulin resistance. Other mechanisms involved in organotin-induced obesity may include estrogen receptor and corticosteroid signaling, altered DNA methylation, and gut dysfunction. In addition to cellular effects, organotin exposure may also affect neural circuits of appetite regulation, being characterized by neuropeptide Y (NPY) up-regulation in parallel with of pro-opiomelanocortin (POMC), Agouti-related protein (AgRP), and cocaine and amphetamine regulated transcript (CART) down-regulation in the arcuate nucleus. These changes result in increased orexigenic and reduced anorexigenic signaling, leading to increased food intake. The existing data demonstrate that organotins are potent adipogenic agents, however, no epidemiologic studies have been performed to reveal the association between organotin exposure and obesity and the existing indirect human data are contradictory. © 2018 Elsevier Inc

    Sex-Specific Differences in Redox Homeostasis in Brain Norm and Disease

    No full text
    Sex differences in brain physiology and by inference various pathologies are generally recognized, however frequently ignored in epidemiological and experimental studies, leading to numerous data gaps. As a consequence, the mechanisms underlying sexual dimorphism of neurological diseases remain largely unknown. Several cellular and molecular pathways linked to the etiology and pathogenesis of various brain disorders have been recently described as sex-specific. Here, we review the evidence for sex differences in brain redox homeostasis, which is an important factor in brain physiology and disease. First, we focus on sex-specific differences in the healthy brain regarding popular redox balance markers, including reactive oxygen and nitrogen species, oxidative damage, and antioxidant status. We also review the modulatory effect of steroid sex hormones on these markers. Lastly, we approach the sex-specific changes in brain redox homeostasis in disease and discuss the possibility that differential redox response contributes to the sexual dimorphism of neurological disorders. © 2019, Springer Science+Business Media, LLC, part of Springer Nature

    Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder

    No full text
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects’ genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies. © 2018 Elsevier Inc

    Sulfhydryl groups as targets of mercury toxicity.

    No full text
    The present study addresses existing data on the affinity and conjugation of sulfhydryl (thiol; -SH) groups of low- and high-molecular-weight biological ligands with mercury (Hg). The consequences of these interactions with special emphasis on pathways of Hg toxicity are highlighted. Cysteine (Cys) is considered the primary target of Hg, and link its sensitivity with thiol groups and cellular damage. In vivo, Hg complexes play a key role in Hg metabolism. Due to the increased affinity of Hg to SH groups in Cys residues, glutathione (GSH) is reactive. The geometry of Hg(II) glutathionates is less understood than that with Cys. Both Cys and GSH Hg-conjugates are important in Hg transport. The binding of Hg to Cys mediates multiple toxic effects of Hg, especially inhibitory effects on enzymes and other proteins that contain free Cys residues. In blood plasma, albumin is the main Hg-binding (Hg2+, CH3Hg+, C2H5Hg+, C6H5Hg+) protein. At the Cys34 residue, Hg2+ binds to albumin, whereas other metals likely are bound at the N-terminal site and multi-metal binding sites. In addition to albumin, Hg binds to multiple Cys-containing enzymes (including manganese-superoxide dismutase (Mn-SOD), arginase I, sorbitol dehydrogenase, and δ-aminolevulinate dehydratase, etc.) involved in multiple processes. The affinity of Hg for thiol groups may also underlie the pathways of Hg toxicity. In particular, Hg-SH may contribute to apoptosis modulation by interfering with Akt/CREB, Keap1/Nrf2, NF-κB, and mitochondrial pathways. Mercury-induced oxidative stress may ensue from Cys-Hg binding and inhibition of Mn-SOD (Cys196), thioredoxin reductase (TrxR) (Cys497) activity, as well as limiting GSH (GS-HgCH3) and Trx (Cys32, 35, 62, 65, 73) availability. Moreover, Hg-thiol interaction also is crucial in the neurotoxicity of Hg by modulating the cytoskeleton and neuronal receptors, to name a few. However, existing data on the role of Hg-SH binding in the Hg toxicity remains poorly defined. Therefore, more research is needed to understand better the role of Hg-thiol binding in the molecular pathways of Hg toxicology and the critical role of thiols to counteract negative effects of Hg overload
    corecore