5 research outputs found

    The impact of intrinsic anhydrite in an experimental calcium sulfoaluminate cement from a novel, carbon-minimized production process

    Get PDF
    Gulf Organisation for Research and Development EG016-RG11757 Open access via Springer Compcat Agreement The authors are grateful for the financial support of the Gulf Organization for Research and Development (GORD) through grant EG016-RG11757. Mr Mathieu Antoni of LafargeHolcim is thanked for his assistance in processing the grinding of the experimental clinker. Mr Theodore Hanein is thanked for insight gained in discussions regarding thermodynamic modelling of the CaO-Al2O3-SO3-SiO2 system within the kiln environment.Peer reviewedPublisher PD

    Production of belite calcium sulfoaluminate cement using sulfur as a fuel and as a source of clinker sulfur trioxide : pilot kiln trial

    Get PDF
    The authors gratefully acknowledge the financial support provided by the Gulf Organization for Research and Development (GORD), Qatar, through research grant number ENG016RGG11757. The authors would also like to acknowledge Thomas Matschei and Guanshu Li for the stimulating and fruitful discussions concerning the development of this work. The continuous support prior to, during and after the pilot kiln trial from Vadym Kuznietsov and the entire team at IBU-tec is also greatly appreciated.Peer reviewedPublisher PD

    Enthalpy of formation of ye’elimite and ternesite

    Get PDF
    Calcium sulfoaluminate clinkers containing ye’elimite (Ca4Al6O12(SO4)) and ternesite (Ca5(SiO4)2SO4) are being widely investigated as components of calcium sulfoaluminate cement clinkers. These may become low energy replacements for Portland cement. Conditional thermodynamic data for ye’elimite and ternesite (enthalpy of formation) have been determined experimentally using a combination of techniques: isothermal conduction calorimetry, X-ray powder diffraction and thermogravimetric analysis. The enthalpies of formation of ye’elimite and ternesite at 25 °C were determined to be − 8523 and − 5993 kJ mol−1, respectively

    Stability of ternesite and the production at scale of ternesite-based clinkers

    No full text
    The authors gratefully acknowledge the financial support provided by the Gulf Organization for Research and Development (GORD), Qatar through research grant number ENG016RGG11757. The authors would also like to acknowledge Dr. Gabriel Jen for carrying out the sieve analysis presented in this work. The continuous support prior to, during, and after the pilot kiln trials from Vadym Kuznietsov and the entire team at IBU-tec is also greatly appreciated.Peer reviewedPostprin
    corecore