

CALCIUM SULFOALUMINATE CEMENT CLINKERING

Galan I, Hanein T, Elhoweris A, Skalamprinos S, Jen G, Whittaker M, Bannerman MN, Imbabi MS, Glasser FP University of Aberdeen, United Kingdom

The aim of these studies was to gain understanding in the phase development of calcium sulfoaluminate cements, together with their resulting properties. Laboratory experiments, pilot plant trials and thermodynamic calculation were used for the studies.

The results show that phase development is affected not only by temperature and composition but also by the partial pressures of SO₂ and O₂ gas in the kiln. The mineralogical contents of the sulfate- containing phases, in coexistence with other silicate and aluminate phases, can be controlled reproducibly.

LABORATORY EXPERIMENTS

Raw materials

 SO_2+O_2 Lab grade Al_2O_3 , SiO_2 , $CaCO_3$, Fe_2O_3 , $CaSO_4$ Bauxite, clay, limestone

Synthesis $C\bar{S}, C_4A_3\bar{S}, C_5S_2\bar{S}, clinkers (C_4A_3\bar{S}-C_2S-C_4AF)$
T 1200-1300 °CRatio SO2:air (g/min) 1:2.5-1:100 (0.04:4)
Time 5-240 min
Powders/pellets

- Rapid transfer of SO₂ and O₂ to clinkering solids to form CSA clinkers
- Temperature windows for clinkers with $C_4A_3\overline{S}$ and $C_5S_2\overline{S}$
- SO₂ partial pressure

Characterisation XRD-Rietveld

threshold: $C\overline{S}+C_2AS < -> C_4A_3\overline{S}+C_2S$

Advances in clinkering technology of calcium sulfoaluminate cement, Galan, Elhoweris, Hanein, Bannerman, Glasser, Adv. Cem. Res. 2017, in press

THERMODYNAMIC CALCULATIONS

Phase compatibility in the System CaO-SiO₂-Al₂O₃-SO₃-Fe₂O₃ and the Effect of Partial Pressure on the Phase Stability, Galan, Hanein, Elhoweris, Bannerman, Glasser, Ind. Eng. Chem. Res. 2017, 56

Stability of ternesite and the production at scale of ternesite-based clinkers, Hanein, Galan, Glasser, Skalamprinos, Elhoweris, Imbabi, Bannerman, Cem. Concr. Res. 2017, 91

PILOT PLANT TRIALS

Kiln: 7.4 m long; 0.3 m diameter Counter current flow Natural gas + Sulfur powder (introduced with screw feeder to the burner)

Limestone, bauxite and clay

Average operating conditions: $1260 \,^{\circ}C; 7\% \,O_2; 0.4\% \,SO_2; rpm 2$

Produced clinker36% $C_4A_3\overline{S}$ 28% β- C_2S 15% α'- C_2S 10% $C\overline{S}$ 4% C_2AS 2% C_4AF 2% CT, 2% C

Production of belite calcium sulfoaluminate cement using sulfur as a fuel and as a source of clinker sulfur trioxide: pilot kiln trial, Hanein, Galan, Elhoweris, Khare, Skalamprinos, Jen, Whittaker, Imbabi, Glasser, Bannerman, Adv. Cem. Res. 2016, 28

HYDRATION

Experimental clinker: rapid hydration Intrinsic anhydrite -> ettringite network

Setting time retardation: addition of citric acid + gypsum or additional mixing and higher w/c

Early strength higher without retarder 28d strength higher with retarder

30µm

The impact of intrinsic anhydrite in an experimental calcium sulfoaluminate cement from a novel, carbon-minimized production process,

Jen, Skalamprinos, Whittaker, Galan, Imbabi, Glasser, Mat. Struct. 2017, 50

CONCLUSIONS

The understanding of the influence of the $SO_2 + O_2$ partial pressure, together with the temperature, on the formation of phases in the system C-S-A- \overline{S} -F has enabled a new approach to clinker design and production. A new generation of sulfoaluminate compositions are being developed which are readily clinkered using conventional processing. Advantages are: further reduction of CO_2 emissions, re-utilization of a waste material, and strength development improvement by controlling and optimising the mineralogy.