30 research outputs found

    Transconductance fluctuations as a probe for interaction induced quantum Hall states in graphene

    Full text link
    Transport measurements normally provide a macroscopic, averaged view of the sample, so that disorder prevents the observation of fragile interaction induced states. Here, we demonstrate that transconductance fluctuations in a graphene field effect transistor reflect charge localization phenomena on the nanometer scale due to the formation of a dot network which forms near incompressible quantum states. These fluctuations give access to fragile broken-symmetry and fractional quantum Hall states even though these states remain hidden in conventional magnetotransport quantities.Comment: 6 pages, 3 figure

    Correlation between resistance fluctuations and temperature dependence of conductivity in graphene

    Full text link
    The weak temperature dependence of the resistance R(T) of monolayer graphene1-3 indicates an extraordinarily high intrinsic mobility of the charge carriers. Important complications are the presence of mobile scattering centres that strongly modify charge transport, and the presence of strong mesoscopic conductance fluctuations that, in graphene, persist to relatively high temperatures4,5. In this Letter, we investigate the surprisingly varied changes in resistance that we find in graphene flakes as temperature is lowered below 70 K. We propose that these changes in R(T) arise from the temperature dependence of the scattered electron wave interference that causes the resistance fluctuations. Using the field effect transistor configuration, we verify this explanation in detail from measurements of R(T) by tuning to different gate voltages corresponding to particular features of the resistance fluctuations. We propose simple expressions that model R(T) at both low and high charge carrier densities

    Enhanced Tunnelling in a Hybrid of Single-Walled Carbon Nanotubes and Graphene

    Full text link
    Transparent and conductive films (TCFs) are of great technological importance. The high transmittance, electrical conductivity and mechanical strength make single-walled carbon nanotubes (SWCNTs) a good candidate for their raw material. Despite the ballistic transport in individual SWCNTs, however, the electrical conductivity of their networks is limited by low efficiency of charge tunneling between the tube elements. Here, we demonstrate that the nanotube network sheet resistance at high optical transmittance is decreased by more than 50% when fabricated on graphene and thus provides a comparable improvement as widely adopted gold chloride (AuCl3\mathrm{AuCl_3}) doping. However, while Raman spectroscopy reveals substantial changes in spectral features of doped nanotubes, no similar effect is observed in presence of graphene. Instead, temperature dependent transport measurements indicate that graphene substrate reduces the tunneling barrier heights while its parallel conductivity contribution is almost negligible. Finally, we show that combining the graphene substrate and AuCl3\mathrm{AuCl_3} doping, the SWCNT thin films can exhibit sheet resistance as low as 36 Ω\Omega/sq. at 90% transmittance.Comment: 21 pages, 6 figure
    corecore