9 research outputs found

    Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration

    No full text
    Aim: Biomaterials that mimic the nanofibrous architecture of the natural extracellular matrix (ECM) are in the focus for stem cell hosting or delivery in tissue engineering of multilayered soft tissues such as skin, mucosa, or retina. Synthetic nanofibers for such ECM are usually produced by single-syringe electrospinning with only one needle-jet at very low production rates of 0.005-0.008?gç­©n(-1). The aim of this study was to utilize a novel industrial needle-free multijet electrospinning device with the potential for mass production of nanofibrous ECM (NF-ECM) exhibiting a controlled three-dimensional (3D) morphology for large-scale applications such as large area skin regeneration in patients with burns. Methods: The novel NanoSpideré ŽS200, an industrial apparatus originally designed for electrospinning of nanofibrous textile meshes, was used to fabricate 3D NF-ECMs of the following synthetic and natural biopolymers: collagen, gelatin, poly(caprolactone) (PCL), and poly(l-lactide-co-glycolide) (PLGA). Different concentrations of Gelatin polymer solution were electrospun under varying processing conditions, namely speed of spinning electrode rotation (u) and electric field intensity (E) by altering applied voltage (v) or the distance between electrodes (h) to achieve homogeneous desirable 3D morphology. Nanofiber diameters were assessed by scanning electron microscopy (SEM). Biocompatibility was tested by WST-1 (water-soluble tetrazolium salt) proliferation assay of seeded human mesenchymal stem cells (HMSCs). Biological performance of HMSCs on 3D PLGA NF-ECM was compared to two-dimensional (2D) PLGA film controls via SEM and confocal microscopy. Western blotting addressed the expression of surface adhesion proteins; focal adhesion kinase (FAK), phosphorylated FAK (pY397), a-tubulin, paxillin, vinculin. and integrin subunits; a5, av, and ß± proteins. Results: Large-scale mass production of NF-ECM membranes with a highly homogenous nanofiber morphology and 3D architecture could be produced with an extremely high production rate of 0.394á°®013?gç­©n(-1)ç­¨-1) when compared to standard procedures. This was achieved by electrospinning a 20% (wt)/(v) gelatin solution, in an electric field intensity of 0.381?kVç­­(-1). The nanofibers possessed diameters of around 180á´°?nm with 28% deviation. HSMCs proliferation was significantly improved on NF-ECMs derived from collagen, gelatin, and PLGA when compared to PCL or flat coverglass controls (p<0.01). PLGA NF-ECM in 3D nanofibrous architecture possessed significantly superior biocompatibility when compared to flat 2D PLGA film (p<0.05). Furthermore, on 3D PLGA NF-ECMs, HSMCs expressed a higher amount of a-tubulin and paxillin compared to the HMSCs cultured on a 2D PLGA film (p<0.05). HMSCs exhibited a complex multifaceted morphology on all NF-ECMs, where cells appeared to be integrated into the 3D NF-ECMs niches with complex cell filopodia extending into to all directions. In contrast, HMSCs on flat 2D films of the same materials or on coverglass displayed a simple flattened, monolayered structure. Conclusion: Needle-free multijet electrospinning can be used to mass produce artificial ECMs with intrinsic biocompatibility and desirable integration of stem cells for large-scale applications.No Full Tex

    Primordium of an artificial Bruch's membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers

    No full text
    Transplanted retinal pigment epithelium (RPE) cells hold promise for treatment of age-related macular degeneration (AMD) and Stargardt disease (SD), but it is conceivable that the degenerated host Bruch's membrane (BM) as a natural substrate for RPE might not optimally support transplanted cell survival with correct cellular organization. We fabricated novel ultrathin three-dimensional (3-D) nanofibrous membranes from collagen type I and poly(lactic-co-glycolic acid) (PLGA) by an advanced clinical-grade needle-free electrospinning process. The nanofibrillar 3-D networks closely mimicked the fibrillar architecture of the native inner collagenous layer of human BM. Human RPE cells grown on our nanofibrous membranes bore a striking resemblance to native human RPE. They exhibited a correctly orientated monolayer with a polygonal cell shape and abundant sheet-like microvilli on their apical surfaces. RPE cells built tight junctions and expressed RPE65 protein. Flat 2-D PLGA film and cover glass as controls delivered inferior RPE layers. Our nanofibrous membranes may imitate the natural BM to such extent that they allow for the engineering of an in vivo-like human RPE monolayer that maintains the natural biofunctional characteristics. Such ultrathin membranes may provide a promising vehicle for a functional RPE cell monolayer implantation in the subretinal space in patients with AMD or SD.Griffith Health, School of Dentistry and Oral HealthNo Full Tex

    Nanospiderwebs:Artificial 3D Extracellular Matrix from Nanofibers by Novel Clinical Grade Electrospinning for Stem Cell Delivery

    No full text
    Novel clinical grade electrospinning methods could provide three-dimensional (3D) nanostructured biomaterials comprising of synthetic or natural biopolymer nanofibers. Such advanced materials could potentially mimic the natural extracellular matrix (ECM) accurately and may provide superior niche-like spaces on the subcellular scale for optimal stem-cell attachment and individual cell homing in regenerative therapies. The goal of this study was to design several novel "nanofibrous extracellular matrices" (NF-ECMs) with a natural mesh-like 3D architecture through a unique needle-free multi-jet electrospinning method in highly controlled manner to comply with good manufacturing practices (GMP) for the production of advanced healthcare materials for regenerative medicine, and to test cellular behavior of human mesenchymal stem cells (HMSCs) on these. Biopolymers manufactured as 3D NF-ECM meshes under clinical grade GMP-like conditions show higher intrinsic cytobiocompatibility with superior cell integration and proliferation if compared to their 2D counterparts or a clinically-approved collagen membrane.No Full Tex

    Design, development and characterization of synthetic Bruch's membranes

    Get PDF
    Age-related macular degeneration (AMD) is a leading cause of blindness, and dry AMD has no effective treatment. Retinal constructs comprising retinal pigment epithelium (RPE) cells supported by electrospun scaffolds have been investigated to treat dry AMD. However, electrospun scaffolds studied to-date do not mimic the structural microenvironment of human Bruch's membrane (BM), essential for native-like RPE monolayers. The aim of this study was to develop a structurally biomimetic scaffold designed to support a functional RPE monolayer, comprising porous, electrospun nanofibrous membranes (ENMs), coated with laminin, mimicking the inner collagenous layer (ICL) and basal RPE lamina respectively, the cell supporting layers of the BM. In vitro evaluation showed 70nm PLLA ENMs adsorbed high amounts of laminin and supported functional RPE monolayers, exhibiting 3D polygonal-cobblestone morphology, apical microvilli, basal infoldings, high transepithelial resistance (TER), phagocytic activity and expression of signature RPE markers. 70nm PLLA ENMs were successfully implanted into the subretinal space of RCS-rdy+p+/LAV rats, also commonly know as rdy rats. At week 4, in the absence of immunosuppressants, implanted PLLA ENMs were surrounded by a significantly low number of activated microglial cells, compared to week 1, indicating no adverse long-term immune response. In conclusion, we successfully designed and tested ENMs emulating the RPE cell supporting layers of the BM, and found 70nm PLLA ENMs to be best suited as scaffolds for fabricating retinal constructs.Age related macular degeneration (AMD) is a leading cause of vision loss in the developed world, with an increasing number of people suffering from blindness or severe visual impairment. Transplantation of retinal pigment epithelium (RPE) cells supported on a synthetic, biomimetic-like Bruch's membrane (BM) is considered a promising treatment. However, the synthetic scaffolds used do not mimic the microenvironment of the RPE cell supporting layers, required for the development of a functional RPE monolayer. This study indicated that porous, laminin coated, 70nm PLLA ENMs supported functional RPE monolayers, exhibiting 3D polygonal-cobblestone morphology, apical microvilli, basal infoldings, high transepithelial resistance (TER), phagocytic activity and expression of signature RPE markers. These findings indicate the potential clinical use of porous, laminin coated, 70nm PLLA ENMs in fabricating retinal constructs aimed at treating dry AMD

    Design, development and characterization of synthetic Bruch's membranes

    Get PDF
    Age-related macular degeneration (AMD) is a leading cause of blindness, and dry AMD has no effective treatment. Retinal constructs comprising retinal pigment epithelium (RPE) cells supported by electrospun scaffolds have been investigated to treat dry AMD. However, electrospun scaffolds studied to-date do not mimic the structural microenvironment of human Bruch's membrane (BM), essential for native-like RPE monolayers. The aim of this study was to develop a structurally biomimetic scaffold designed to support a functional RPE monolayer, comprising porous, electrospun nanofibrous membranes (ENMs), coated with laminin, mimicking the inner collagenous layer (ICL) and basal RPE lamina respectively, the cell supporting layers of the BM. In vitro evaluation showed 70nm PLLA ENMs adsorbed high amounts of laminin and supported functional RPE monolayers, exhibiting 3D polygonal-cobblestone morphology, apical microvilli, basal infoldings, high transepithelial resistance (TER), phagocytic activity and expression of signature RPE markers. 70nm PLLA ENMs were successfully implanted into the subretinal space of RCS-rdy+p+/LAV rats, also commonly know as rdy rats. At week 4, in the absence of immunosuppressants, implanted PLLA ENMs were surrounded by a significantly low number of activated microglial cells, compared to week 1, indicating no adverse long-term immune response. In conclusion, we successfully designed and tested ENMs emulating the RPE cell supporting layers of the BM, and found 70nm PLLA ENMs to be best suited as scaffolds for fabricating retinal constructs.Age related macular degeneration (AMD) is a leading cause of vision loss in the developed world, with an increasing number of people suffering from blindness or severe visual impairment. Transplantation of retinal pigment epithelium (RPE) cells supported on a synthetic, biomimetic-like Bruch's membrane (BM) is considered a promising treatment. However, the synthetic scaffolds used do not mimic the microenvironment of the RPE cell supporting layers, required for the development of a functional RPE monolayer. This study indicated that porous, laminin coated, 70nm PLLA ENMs supported functional RPE monolayers, exhibiting 3D polygonal-cobblestone morphology, apical microvilli, basal infoldings, high transepithelial resistance (TER), phagocytic activity and expression of signature RPE markers. These findings indicate the potential clinical use of porous, laminin coated, 70nm PLLA ENMs in fabricating retinal constructs aimed at treating dry AMD
    corecore