6 research outputs found

    A survey on different plant diseases detection using machine learning techniques

    Get PDF
    Early detection and identification of plant diseases from leaf images using machine learning is an important and challenging research area in the field of agriculture. There is a need for such kinds of research studies in India because agriculture is one of the main sources of income which contributes seventeen percent of the total gross domestic product (GDP). Effective and improved crop products can increase the farmer's profit as well as the economy of the country. In this paper, a comprehensive review of the different research works carried out in the field of plant disease detection using both state-of-art, handcrafted-features- and deep-learning-based techniques are presented. We address the challenges faced in the identification of plant diseases using handcrafted-features-based approaches. The application of deep-learning-based approaches overcomes the challenges faced in handcrafted-features-based approaches. This survey provides the research improvement in the identification of plant diseases from handcrafted-features-based to deep-learning-based models. We report that deep-learning-based approaches achieve significant accuracy rates on a particular dataset, but the performance of the model may be decreased significantly when the system is tested on field image condition or on different datasets. Among the deep learning models, deep learning with an inception layer such as GoogleNet and InceptionV3 have better ability to extract the features and produce higher performance results. We also address some of the challenges that are needed to be solved to identify the plant diseases effectively.Web of Science1117art. no. 264

    Plant Disease Identification Using Shallow Convolutional Neural Network

    No full text
    Various plant diseases are major threats to agriculture. For timely control of different plant diseases in effective manner, automated identification of diseases are highly beneficial. So far, different techniques have been used to identify the diseases in plants. Deep learning is among the most widely used techniques in recent times due to its impressive results. In this work, we have proposed two methods namely shallow VGG with RF and shallow VGG with Xgboost to identify the diseases. The proposed model is compared with other hand-crafted and deep learning-based approaches. The experiments are carried on three different plants namely corn, potato, and tomato. The considered diseases in corns are Blight, Common rust, and Gray leaf spot, diseases in potatoes are early blight and late blight, and tomato diseases are bacterial spot, early blight, and late blight. The result shows that our implemented shallow VGG with Xgboost model outperforms different deep learning models in terms of accuracy, precision, recall, f1-score, and specificity. Shallow Visual Geometric Group (VGG) with Xgboost gives the highest accuracy rate of 94.47% in corn, 98.74% in potato, and 93.91% in the tomato dataset. The models are also tested with field images of potato, corn, and tomato. Even in field image the average accuracy obtained using shallow VGG with Xgboost are 94.22%, 97.36%, and 93.14%, respectively

    Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach

    No full text
    The timely identification and early prevention of crop diseases are essential for improving production. In this paper, deep convolutional-neural-network (CNN) models are implemented to identify and diagnose diseases in plants from their leaves, since CNNs have achieved impressive results in the field of machine vision. Standard CNN models require a large number of parameters and higher computation cost. In this paper, we replaced standard convolution with depth=separable convolution, which reduces the parameter number and computation cost. The implemented models were trained with an open dataset consisting of 14 different plant species, and 38 different categorical disease classes and healthy plant leaves. To evaluate the performance of the models, different parameters such as batch size, dropout, and different numbers of epochs were incorporated. The implemented models achieved a disease-classification accuracy rates of 98.42%, 99.11%, 97.02%, and 99.56% using InceptionV3, InceptionResNetV2, MobileNetV2, and EfficientNetB0, respectively, which were greater than that of traditional handcrafted-feature-based approaches. In comparison with other deep-learning models, the implemented model achieved better performance in terms of accuracy and it required less training time. Moreover, the MobileNetV2 architecture is compatible with mobile devices using the optimized parameter. The accuracy results in the identification of diseases showed that the deep CNN model is promising and can greatly impact the efficient identification of the diseases, and may have potential in the detection of diseases in real-time agricultural systems

    Classification of Valvular Regurgitation Using Echocardiography

    No full text
    Echocardiography (echo) is a commonly utilized tool in the diagnosis of various forms of valvular heart disease for its ability to detect types of cardiac regurgitation. Regurgitation represents irregularities in cardiac function and the early detection of regurgitation is necessary to avoid invasive cardiovascular surgery. In this paper, we focussed on the classification of regurgitations from videographic echo images. Three different types of regurgitation are considered in this work, namely, aortic regurgitation (AR), mitral regurgitation (MR), and tricuspid regurgitation (TR). From the echo images, texture features are extracted, and classification is performed using Random Forest (RF) classifier. Extraction of keyframe is performed from the video file using two approaches: a reference frame keyframe extraction technique and a redundant frame removal technique. To check the robustness of the model, we have considered both segmented and nonsegmented frames. Segmentation is carried out after keyframe extraction using the Level Set (LS) with Fuzzy C-means (FCM) approach. Performances are evaluated in terms of accuracy, precision, recall, and F1-score and compared for both reference frame and redundant frame extraction techniques. K-fold cross-validation is used to examine the performance of the model. The performance result shows that our proposed approach outperforms other state-of-art machine learning approaches in terms of accuracy, precision, recall, and F1-score
    corecore