135 research outputs found

    Resource use in two contrasting habitat types raises different challenges for the conservation of the dryad butterfly Minois dryas

    Get PDF
    The suitability of any location for a given species is determined by the available resources. However, there are many species that occur in more than one habitat type and their successful conservation may be particularly difficult. The dryad Minois dryas, a locally endangered butterfly, occurs in two contrasting habitats-xerothemic and wet grasslands. We investigated the influence of various habitat characteristics, such as vegetation height, grass cover, proximity of shrubs, plant species composition, Ellenberg indices of trophic and microclimatic conditions, on the microhabitat selection by the species. The nectaring of randomly selected butterflies was observed and habitat characteristics were compared at random points within the meadow and at the butterfly’s nectaring and resting places. The butterflies generally preferred to stay close to shrubs and avoided invasive goldenrods. Thermal conditions and the availability of nectar plants were the factors limiting the dryad’s use of wet grassland. In xerothermic habitats grass cover affected the distribution of butterflies. Concerning the availability of larval host plants, wet meadows proved potentially more favourable, whereas nectar resources for adults were more abundant in xerothermic grasslands. Based on our findings, conservation strategies for this butterfly must differ in the two habitats. Rotational mowing in xerothermic grasslands and the removal of invasive goldenrods in wet grasslands are the recommended actions. At a larger spatial scale, a habitat mosaic composed of xerothermic and wet grasslands in close proximity would seem to be the most suitable areas for the conservation of the dryad

    Numerical and behavioural response of Black-headed Gull Chroicocephalus ridibundus on population growth of the expansive Caspian Gull Larus cachinnans

    Get PDF
    We monitored population size from 1996 to 2003 and studied behavioural interactions (in 2001) between the native Black-headed Gull Chroicocephalus ridibundus and an expansive, opportunistic predator, the Caspian Gull Larus cachinnans, at water reservoirs in Poland. The expansive species caused a population decline in the native species and affected its choice of nest sites. The Black-headed Gulls perceived the risk of predation on the part of the larger Caspian Gulls. When both species occurred in close proximity, the native gull breeding pairs built nests where the vegetation was higher and its cover greater than at the sites chosen by pairs breeding far away from the expansive species. The native gulls in proximity to the expansive species spent more time guarding their nests. However, this was not compensatory, as egg losses were higher and breeding success much lower in pairs breeding near the Caspian Gulls than in those breeding far from the latter. Such a low breeding performance in the Black-headed Gulls was probably caused either by predation on the part of Caspian Gulls or by aggressive interactions among Black-headed Gulls. In fact, the rate of intraspecific aggression in native gulls was higher in pairs breeding in proximity to the expansive species than in those breeding far away from it. These intraspecific fights, caused by the presence of the expansive species were, at least partially, responsible for egg and chick losses. We did not find the presence of native gulls to have any effect on the behaviour and breeding performance of the expansive gull. These results indicate that the expansive predatory Caspian Gull negatively affects local population size and alters the behaviour of the native Black-headed Gull, and may, both directly and indirectly, affect its reproductive performance

    Within-patch mobility and flight morphology reflect resource use and dispersal potential in the dryad butterfly Minois dryas

    Get PDF
    Knowledge of mobility is essential for understanding animal habitat use and dispersal potential, especially in the case of species occurring in fragmented habitats. We compared within-patch movement distances, turning angles, resting times, and flight-related morphological traits in the locally endangered butterfly, the dryad (Minois dryas), between its old populations occupying xerothermic grasslands and newly established ones in wet meadows. We expected that the latter group should be more mobile. Individuals living in both habitat types did not differ in their body mass and size, but those from xerothermic grasslands had wider thoraxes and longer wings, thus lower wing loading index (defined as body mass to wing length ratio). The majority of movements were short and did not exceed 10 m. Movement distances were significantly larger in males. However, there was no direct effect of habitat type on movement distances. Our results suggest that the dryads from xerothermic grasslands have better flight capabilities, whereas those from wet meadows are likely to invest more in reproduction. This implies that mobility is shaped by resource availability rather than by recent evolutionary history. Lower female mobility may have negative implications for the metapopulation persistence because only mated females are able to (re)colonise vacant habitat patches efficiently. Conservation efforts should thus be focused on maintaining large habitat patches that prevent stochastic local extinctions. Furthermore, the recommendation of promoting the exchange of individuals among patches through improving matrix permeability, as well as assisted reintroductions of the species into suitable vacant habitats should also improve its conservation

    Local populations of endangered Maculinea (Phengaris) butterflies are flood resistant

    Get PDF
    Semi-natural wet meadows are threatened by drainage, the abandonment of traditional management and climate change. The large blue butterflies Maculinea teleius and M. nausithous are flagship species associated with wet meadows and are the targets of many conservation programmes. However, there is little knowledge on the impact of natural catastrophes, such as floods, on the persistence of these butterflies. In our study we tested how a flood that resulted in the temporary inundation of meadows affected populations of M. teleius and M. nausithous. Studies were conducted in two consecutive seasons of 2009 (with ‘normal’ weather) and 2010 (with extreme rainfall and a consequent flood in May) in a wet meadow complex located in the Vistula River valley in southern Poland. In both years the abundance of adults was estimated for each local habitat patch (n = 55) within sympatric metapopulations of both species. Additionally, in June 2010, i.e. directly after the flood and shortly before the flight period, a total of 754 Myrmica ant nests in 10 habitat patches (6 inundated vs. 4 not inundated) were checked for the presence of Maculinea larvae and pupae. We found no impact of inundation on year-to-year changes in adult population sizes. The probability of occurrence of Maculinea larvae and pupae in ant nests was higher in temporarily inundated meadows. Our results indicate that temporary inundation occurring after long-term downpours does not negatively affect the investigated species even during the larval period in ant nests at ground level. This provides an argument against drainage works in wet meadows with Maculinea butterflies

    Invasive alien plants affect grassland ant communities, colony size and foraging behaviour

    Get PDF
    Ants are dominant members of many terrestrial ecosystems and are regarded as indicators of environmental changes. However, little is known about the effects of invasive alien plants on ant populations, particularly as regards the density, spatial distribution and size of ant colonies, as well as their foraging behaviour. We addressed these questions in a study of grassland ant communities on five grasslands invaded by alien goldenrods (Solidago sp.) and on five non-invaded grasslands without this plant. In each grassland, seven 100 m plots were selected and the ant colonies counted. Ant species richness and colony density was lower in the plots on the invaded grasslands. Moreover, both of these traits were higher in the plots near the grassland edge and with a higher number of plant species in the grasslands invaded by goldenrods but not in the non-invaded ones. On average, ant colony size was lower on the invaded grasslands than the non-invaded ones. Also, ant workers travelled for longer distances to collect food items in the invaded areas than they did in the non-invaded ones, even after the experimental removal of some ant colonies in order to exclude the effect of higher colony density in the latter. Our results indicate that invasive alien goldenrods have a profound negative effect on grassland ant communities which may lead to a cascade effect on the whole grassland ecosystem through modification of the interactions among species. The invasion diminishes a major index of the fitness of ants, which is a colony's size, and probably leads to increased foraging effort of workers. This, in turn, may have important consequences for the division of labour and reproductive strategies within ant colonies

    Butterfly responses to environmental factors in fragmented calcareous grasslands

    Get PDF
    Although there is much research showing a strong negative effect of habitat fragmentation and deterioration on the viability of different insect populations and on species richness, the effect of fragmentation is modified by other local and landscape factors. One of the most substantial gaps in knowledge is whether species are similar in their response to the same environmental factors and if their response mirrors response of the entire community. From the conservation point of view this knowledge is of primary importance in planning conservation actions, yet these studies are rare. In this paper we test the relative effects of habitat patch and landscape characteristics on butterflies inhabiting calcareous grasslands in southern Poland. Butterfly species richness and abundance were positively affected by patch size and wind shelter. In the case of species richness there was also a positive effect of plant species richness. Butterfly diversity was enhanced in wind sheltered patches, and commonness (non-rarity) enhanced by distance to buildings and by shorter vegetation. Multivariate analysis suggested differences in the responses of individual species to the examined environmental variables, with some species more responsive to patch size and shelter and others to sward height. The conservation of butterfly communities requires sensible and complex management to ensure high habitat diversity. The most important challenge for future studies on calcareous grasslands is to formulate a model of management that guarantees high species richness and conservation of each individual species

    Plant establishment and invasions : an increase in a seed disperser combined with land abandonment causes an invasion of the non-native walnut in Europe

    Get PDF
    Successful invasive species often are established for a long time period before increasing exponentially in abundance. This lag phase is one of the least understood phenomena of biological invasions. Plant invasions depend on three factors: a seed source, suitable habitat and a seed disperser. The non-native walnut, Juglans regia, has been planted for centuries in Central Europe but, until recently, has not spread beyond planted areas. However, in the past 20 years, we have observed a rapid increase in walnut abundance, specifically in abandoned agricultural fields. The dominant walnut disperser is the rook, Corvus frugilegus. During the past 50 years, rooks have increased in abundance and now commonly inhabit human settlements, where walnut trees are planted. Central Europe has, in the past few decades, experienced large-scale land abandonment. Walnut seeds dispersed into ploughed fields do not survive, but when cached into ploughed and then abandoned fields, they successfully establish. Rooks preferentially cache seeds in ploughed fields. Thus, land-use change combined with disperser changes can cause rapid increase of a non-native species, allowing it to become invasive. This may have cascading effects on the entire ecosystem. Thus, species that are non-native and not invasive can become invasive as habitats and dispersers change

    Linear and non-linear effects of goldenrod invasions on native pollinator and plant populations

    Get PDF
    The increased introduction of non-native species to habitats is a characteristic of globalisation. The impact of invading species on communities may be either linearly or non-linearly related to the invaders’ abundance in a habitat. However, non-linear relationships with a threshold point at which the community can no longer tolerate the invasive species without loss of ecosystem functions remains poorly studied. We selected 31 wet meadow sites that encompassed the entire coverage spectrum of invasive goldenrods, and surveyed the abundance and diversity of pollinating insects (bees, butterflies and hover flies) and native plants. The species richness of native plants decreased linearly with goldenrod cover, whereas the abundance and species richness of bees and butterflies decreased non-linearly with increasing goldenrod cover. However, no statistically significant changes across goldenrod cover were noted for the abundance and species richness of hover flies. Because of the non-linear response, goldenrod had no visible impact on bees and butterflies until it reached cover in a habitat of about 50% and 30–40%, respectively. Moreover, changes driven by goldenrod in the plant and pollinator communities were related to species loss rather than species replacement. We demonstrated that the impact of goldenrod cover on a habitat is not instantaneous. Habit management aimed at preventing the invasion process and alleviating its impact should take into account that, for the non-linear relationships, the negative impact can appear rapidly after crossing the threshold point
    corecore