11 research outputs found

    OH masers in the Milky Way and Local Group galaxies in the SKA era

    Full text link
    The intense line emission of OH masers is a perfect tracer of regions where new stars are born aswell as of evolved stars, shedding large amounts of processed matter into the interstellar medium. From SKA deep surveys at 18 cm, where the maser lines from the ground-state of the OH molecule arise, we predict the discovery of more than 20000 sources of stellar and interstellar origin throughout the Galaxy. The study of this maser emission has many applications, including the determination of magnetic field strengths from polarisation measurements, studies of stellar kinematics using the precisely determined radial velocities, and distance determinations from VLBI astrometry. A new opportunity to study shocked gas in different galactic environments is expected to arise with the detection of lower luminosity masers. For the first time, larger numbers of OH masers will be detected in Local Group galaxies. New insights are expected in structure formation in galaxies by comparing maser populations in galaxies of different metallicity, as both their properties as well as their numbers depend on it. With the full capabilities of SKA, further maser transitions such as from excited OH and from methanol will be accessible, providing new tools to study the evolution of star-forming regions in particular.Comment: Contribution to the conference on "Advancing Astrophysics with the Square Kilometre Array" for the SKA science book, Giardini-Naxos, Sicily, June 2014; in Proceedings of Science, 14 page

    Searching for Radio Outflows from M31* with VLBI Observations

    Full text link
    As one of the nearest and most dormant supermassive black holes (SMBHs), M31* provides a rare but promising opportunity for studying the physics of black hole accretion and feedback at the quiescent state. Previous Karl G. Jansky Very Large Array (VLA) observations with an arcsec resolution have detected M31* as a compact radio source over centimeter wavelengths, but the steep radio spectrum suggests optically-thin synchrotron radiation from an outflow driven by a hot accretion flow onto the SMBH. Aiming to probe the putative radio outflow, we have conducted milli-arcsec-resolution very long baseline interferometric (VLBI) observations of M31* in 2016, primarily at 5 GHz and combining the Very Long Baseline Array, Tianma-65m and Shanghai-25m Radio Telescopes. Despite the unprecedented simultaneous resolution and sensitivity achieved, no significant (≳3σ\gtrsim 3\sigma) signal is detected at the putative position of M31* given an RMS level of 5.9 μJy beam−1\rm 5.9~\mu Jy\ beam^{-1}, thus ruling out a point-like source with a peak flux density comparable to that (∼30 μJy beam−1\sim30~\mu Jy\ beam^{-1}) measured by the VLA observations taken in 2012. We disfavor the possibility that M31* has substantially faded since 2012, in view that a 2017 VLA observation successfully detected M31* at a historically-high peak flux density (∼75 μJy beam−1\sim75~\mu Jy\ beam^{-1} at 6 GHz). Instead, the non-detection of the VLBI observations is best interpreted as the arcsec-scale core being resolved out at the milli-arcsec-scale, suggesting an intrinsic size of M31* at 5 GHz larger than ∼300\sim300 times the Schwarzschild radius. Such extended radio emission may originate from a hot wind driven by the weakly accreting SMBH.Comment: 9 pages, 2 figures. Accepted for publication in the Astrophysical Journa

    Structure of W3(OH) from Very High Spectral Resolution Observations of 5 Centimeter OH Masers

    Full text link
    Recent studies of methanol and ground-state OH masers at very high spectral resolution have shed new light on small-scale maser processes. The nearby source W3(OH), which contains numerous bright masers in several different transitions, provides an excellent laboratory for high spectral resolution techniques. We present a model of W3(OH) based on EVN observations of the rotationally-excited 6030 and 6035 MHz OH masers taken at 0.024 km/s spectral resolution. The 6.0 GHz masers are becoming brighter with time and show evidence for tangential proper motions. We confirm the existence of a region of magnetic field oriented toward the observer to the southeast and find another such region to the northeast in W3(OH), near the champagne flow. The 6.0 GHz masers trace the inner edge of a counterclockwise rotating torus feature. Masers at 6030 MHz are usually a factor of a few weaker than at 6035 MHz but trace the same material. Velocity gradients of nearby Zeeman components are much more closely correlated than in the ground state, likely due to the smaller spatial separation between Zeeman components. Hydroxyl maser peaks at very long baseline interferometric resolution appear to have structure on scales both smaller than that resolvable as well as on larger scales.Comment: 21 pages using emulateapj.cls including 16 figures and 2 tables, accepted to Ap

    A Very High Spectral Resolution Study of Ground-State OH Masers in W3(OH)

    Get PDF
    We present VLBA observations of the ground-state hydroxyl masers in W3(OH) at 0.02 km s-1 spectral resolution. Over 250 masers are detected, including 56 Zeeman pairs. Lineshapes are predominantly Gaussian or combinations of several Gaussians, with normalized deviations typically of the same magnitude as in masers in other species. Typical FWHM maser linewidths are 0.15 to 0.38 km s-1 and are larger in the 1665 MHz transition than in the other three ground-state transitions. The satellite-line 1612 and 1720 MHz masers show no evidence of sigma^+/-2,3 components. The spatial positions of most masers are seen to vary across the line profile, with many spots showing clear, organized positional gradients. Equivalent line-of-sight velocity gradients in the plane of the sky typically range from 0.01 to 1 km s-1 AU-1 (i.e., positional gradients of 1 to 100 AU (km s-1)-1). Small velocity gradients in the 1667 MHz transition support theoretical predictions that 1667 MHz masers appear in regions with small velocity shifts along the amplification length. Deconvolved maser spot sizes appear to be larger in the line wings but do not support a spherical maser geometry

    Two New X-ray/Optical/Radio Supernova Remnants in M31

    Full text link
    We compare a deep (37 ks) Chandra ACIS-S image of the M31 bulge to Local Group Survey narrow-band optical data and Very Large Array (VLA) radio data of the same region. Our precisely registered images reveal two new optical shells with X-ray counterparts. These shells have sizes, [S II]/H-alpha flux ratios, and X-ray spectral properties typical of supernova remnants (SNRs) with ages of 9−4+3^{+3}_{-4} and 17−9+6^{+6}_{-9} kyr. Analysis of complementary VLA data reveals the radio counterparts, further confirming that they are SNRs. We discuss and compare the properties and morphologies of these SNRs at the different wavelengths.Comment: 18 pages, 5 figures, accepted for publication in Ap

    18-cm VLA observations of OH towards the Galactic Centre : Absorption and emission in the four ground-state OH lines

    No full text
    The OH distribution in the Sgr A Complex has been observed in the 1612-, 1665-, 1667- and 1720-MHz OH transitions with the Very Large Array (VLA) in BnA configuration. Maps are presented with a channel velocity resolution of about 9 km s -1 and with angular resolutions of  . Some clear results are highlighted here, such as absorption from the Circumnuclear Disk (CND) and the OH-Streamer inside the CND near Sgr , strong absorption towards most of the eastern and western parts of the Sgr A East shell, lack of absorption towards both Sgr A West and the compact H II-regions to the east of Sgr A East, and double-lobed structure of the High Negative Velocity Gas (HNVG) oriented northeast and southwest of Sgr , and finally compact, point-like maser emission in all four transitions, in particular a 1720-MHz maser at -132 km s -1 in the CND as counterpart to a 1720-MHz maser at +132 km s -1 in the CND
    corecore