6 research outputs found

    Conservation Genetic Resources for Effective Species Survival (ConGRESS): Bridging the divide between conservation research and practice

    No full text
    Policy makers and managers are increasingly called upon to assess the state of biodiversity, and make decisions regarding potential interventions. Genetic tools are well-recognised in the research commu- nity as a powerful approach to evaluate species and population status, reveal ecological and demographic processes, and inform nature conservation decisions. The wealth of genetic data and power of genetic methods are rapidly growing, but the consideration of genetic information and concerns in policy and management is limited by the currently low capacity of decision-makers to access and apply genetic resources. Here we describe a freely available, user-friendly online resource for decision-makers at local and national levels (http://congressgenetics.eu), which increases access to current knowledge, facili- tates implementation of studies and interpretation of available data, and fosters collaboration between researchers and practitioners. This resource was created in partnership with conservation practitioners across the European Union, and includes a spectrum of taxa, ecosystems and conservation issues. Our goals here are to (1) introduce the rationale and context, (2) describe the specific tools (knowledge summ- aries, publications database, decision making tool, project planning tool, forum, community directory), and the challenges they help solve, and (3) summarise lessons learned. This article provides an outlook and model for similar efforts to build policy and management capacit

    Combining demography and genetic analysis to assess the population structure of an amphibian in a human-dominated landscape

    No full text
    In this article, we applied demographic and genetic approaches to assess how landscape features influence dispersal patterns and genetic structure of the common frog Rana temporaria in a landscape where anthropogenic perturbations are pervasive (urbanization and roads). We used a combination of GIS methods that integrate radiotracking and landscape configuration data, and simulation techniques in order to estimate the potential dispersal area around breeding patches. Additionally, genetic data provided indirect measures of dispersal and allowed to characterise the spatial genetic structure of ponds and the patterns of gene flow across the landscape. Although demographic simulations predicted six distinct groups of habitat patches within which movement can occur, genetic analyses suggested a different configuration. More precisely, BAPS5 spatial clustering method with ponds as the analysis unit detected five spatial clusters. Individual-based analyses were not able to detect significant genetic structure. We argue that (1) taking into account that each individual breeds in specific breeding patch allowed for better explanation of population functioning, (2) the discrepancy between direct (radiotracking) and indirect (genetic) estimates of subpopulations (breeding patches) is due to a recent landscape fragmentation (e.g. traffic increase). We discuss the future of this population in the face of increasing landscape fragmentation, focusing on the need for combining demographic and genetic approaches when evaluating the conservation status of population subjected to rapid landscape changes.</p
    corecore