342 research outputs found

    Deltagande Forskning – Lärdomar, resultat och erfarenheter från Växthusgruppens arbete 1999–2000

    Get PDF
    Centrum för uthålligt lantbruk (CUL) vid SLU har initierat ett pionjärarbete att få igång deltagande forskning inom lantbrukssektorn i Sverige. I denna rapport beskrivs den läro- och förändringsprocess, de framgångar och svårigheter, som en av de grupper som ingår i CUL:s satsning genomgått och mött under sitt arbete med deltagande forskning. De resultat gruppens försök och praktiska arbete lett fram till presenteras också. Rapporten är skriven av gruppens facilitator (Karin Eksvärd) efter att ha samtalat med gruppmedlemmarna enskilt och tillsammans om deltagarnas åsikter kring gruppens arbete och arbetsformer. Några av gruppdeltagarnas åsikter och uttalanden finns inlagda som citat i rapporten. Deltagarna har även haft möjlighet att kommentera rapporten under dess framtagande. Gruppens arbete har möjliggjorts genom att rådgivarna har arrangerat gruppens möten som kurser inom miljöstödsprogrammet. Det har varit ett givande och lärorikt arbete som fortsätter att öka vårt kunnande om ekologisk tomatodling, oss själva som grupp och sättet att arbeta. Vi hoppas att denna rapport skall inspirera fler lantbrukare, rådgivare och forskare att i högre grad samverka med varandra och att på detta sätt vidareutveckla svenskt lantbruk

    Transmembrane Domain Single-Nucleotide Polymorphisms Impair Expression and Transport Activity of ABC Transporter ABCG2

    Get PDF
    To study the function and expression of nine naturally occurring single-nucleotide polymorphisms (G406R, F431L, S441N, P480L, F489L, M515R, L525R, A528T and T542A) that are predicted to reside in the transmembrane regions of the ABC transporter ABCG2. The transport activity of the variants was tested in inside-out membrane vesicles from Sf9 insect and human derived HEK293 cells overexpressing ABCG2. Lucifer Yellow and estrone sulfate were used as probe substrates of activity. The expression levels and cellular localization of the variants was compared to the wild-type ABCG2 by western blotting and immunofluorescence microscopy. All studied variants of ABCG2 displayed markedly decreased transport in both Sf9-ABCG2 and HEK293-ABCG2 vesicles. Impaired transport could be explained for some variants by altered expression levels and cellular localization. Moreover, the destructive effect on transport activity of variants G406R, P480L, M515R and T542A is, to our knowledge, reported for the first time. These results indicate that the transmembrane region of ABCG2 is sensitive to amino acid substitution and that patients harboring these ABCG2 variant forms could suffer from unexpected pharmacokinetic events of ABCG2 substrate drugs or have an increased risk for diseases such as gout where ABCG2 is implicated.Peer reviewe

    First Principles Calculations of Fe on GaAs (100)

    Full text link
    We have calculated from first principles the electronic structure of 0.5 monolayer upto 5 monolayer thick Fe layers on top of a GaAs (100) surface. We find the Fe magnetic moment to be determined by the Fe-As distance. As segregates to the top of the Fe film, whereas Ga most likely is found within the Fe film. Moreover, we find an asymmetric in-plane contraction of our unit-cell along with an expansion perpendicular to the surface. We predict the number of Fe 3d-holes to increase with increasing Fe thickness on pp-doped GaAs.Comment: 9 pages, 14 figures, submitted to PR

    Association of CSF proteins with tau and amyloid β levels in asymptomatic 70-year-olds

    Get PDF
    BACKGROUND: Increased knowledge of the evolution of molecular changes in neurodegenerative disorders such as Alzheimer's disease (AD) is important for the understanding of disease pathophysiology and also crucial to be able to identify and validate disease biomarkers. While several biological changes that occur early in the disease development have already been recognized, the need for further characterization of the pathophysiological mechanisms behind AD still remains. METHODS: In this study, we investigated cerebrospinal fluid (CSF) levels of 104 proteins in 307 asymptomatic 70-year-olds from the H70 Gothenburg Birth Cohort Studies using a multiplexed antibody- and bead-based technology. RESULTS: The protein levels were first correlated with the core AD CSF biomarker concentrations of total tau, phospho-tau and amyloid beta (Aβ42) in all individuals. Sixty-three proteins showed significant correlations to either total tau, phospho-tau or Aβ42. Thereafter, individuals were divided based on CSF Aβ42/Aβ40 ratio and Clinical Dementia Rating (CDR) score to determine if early changes in pathology and cognition had an effect on the correlations. We compared the associations of the analysed proteins with CSF markers between groups and found 33 proteins displaying significantly different associations for amyloid-positive individuals and amyloid-negative individuals, as defined by the CSF Aβ42/Aβ40 ratio. No differences in the associations could be seen for individuals divided by CDR score. CONCLUSIONS: We identified a series of transmembrane proteins, proteins associated with or anchored to the plasma membrane, and proteins involved in or connected to synaptic vesicle transport to be associated with CSF biomarkers of amyloid and tau pathology in AD. Further studies are needed to explore these proteins' role in AD pathophysiology

    Origin of the photoemission final-state effects in Bi2Sr2CaCu2O8 by very-low-energy electron diffraction

    Full text link
    Very-low-energy electron diffraction with a support of full-potential band calculations is used to achieve the energy positions, K// dispersions, lifetimes and Fourier compositions of the photoemission final states in Bi2Sr2CaCu2O8 at low excitation energies. Highly structured final states explain the dramatic matrix element effects in photoemission. Intense c(2x2) diffraction reveals a significant extrinsic contribution to the shadow Fermi surface. The final-state diffraction effects can be utilized to tune the photoemission experiment on specific valence states or Fermi surface replicas.Comment: 4 pages, 3 Postscript figures, submitted to Phys. Rev. Lett; major revision

    The Role and Mechanism of Erythrocyte Invasion by Francisella tularensis

    Get PDF
    Francisella tularensis is an extremely virulent bacterium that can be transmitted naturally by blood sucking arthropods. During mammalian infection, F. tularensis infects numerous types of host cells, including erythrocytes. As erythrocytes do not undergo phagocytosis or endocytosis, it remains unknown how F. tularensisinvades these cells. Furthermore, the consequence of inhabiting the intracellular space of red blood cells (RBCs) has not been determined. Here, we provide evidence indicating that residing within an erythrocyte enhances the ability of F. tularensis to colonize ticks following a blood meal. Erythrocyte residence protected F. tularensis from a low pH environment similar to that of gut cells of a feeding tick. Mechanistic studies revealed that the F. tularensis type VI secretion system (T6SS) was required for erythrocyte invasion as mutation of mglA (a transcriptional regulator of T6SS genes), dotU, or iglC (two genes encoding T6SS machinery) severely diminished bacterial entry into RBCs. Invasion was also inhibited upon treatment of erythrocytes with venom from the Blue-bellied black snake (Pseudechis guttatus), which aggregates spectrin in the cytoskeleton, but not inhibitors of actin polymerization and depolymerization. These data suggest that erythrocyte invasion by F. tularensis is dependent on spectrin utilization which is likely mediated by effectors delivered through the T6SS. Our results begin to elucidate the mechanism of a unique biological process facilitated by F. tularensis to invade erythrocytes, allowing for enhanced colonization of ticks

    Identification of Genes Contributing to the Virulence of Francisella tularensis SCHU S4 in a Mouse Intradermal Infection Model

    Get PDF
    Background: Francisella tularensis is a highly virulent human pathogen. The most virulent strains belong to subspecies tularensis and these strains cause a sometimes fatal disease. Despite an intense recent research effort, there is very limited information available that explains the unique features of subspecies tularensis strains that distinguish them from other F. tularensis strains and that explain their high virulence. Here we report the use of targeted mutagenesis to investigate the roles of various genes or pathways for the virulence of strain SCHU S4, the type strain of subspecies tularensis. Methodology/Principal Findings: The virulence of SCHU S4 mutants was assessed by following the outcome of infection after intradermal administration of graded doses of bacteria. By this route, the LD\u2085\u2080 of the SCHU S4 strain is one CFU. The virulence of 20 in-frame deletion mutants and 37 transposon mutants was assessed. A majority of the mutants did not show increased prolonged time to death, among them notably \u394pyrB and \u394recA. Of the remaining, mutations in six unique targets, tolC, rep, FTT0609, FTT1149c, ahpC, and hfq resulted in significantly prolonged time to death and mutations in nine targets, rplA, wbtI, iglB, iglD, purL, purF, ggt, kdtA, and glpX, led to marked attenuation with an LD\u2085\u2080 of >10\ub3 CFU. In fact, the latter seven mutants showed very marked attenuation with an LD\u2085\u2080 of 6510\u2077 CFU. Conclusions/Significance: The results demonstrate that the characterization of targeted mutants yielded important information about essential virulence determinants that will help to identify the so far little understood extreme virulence of F. tularensis subspecies tularensis.Peer reviewed: YesNRC publication: Ye

    Evidence of Strong Electron Correlations in Gamma-Iron

    Full text link
    Single-particle excitation spectra of gamma-Fe in the paramagnetic state have been investigated by means of the first-principles dynamical coherent potential approximation theory which has recently been developed. It is found that the central peak in the density of states consisting of the t2g bands is destroyed by electron correlations, and the Mott-Hubbard type correlated bands appear. The results indicate that the gamma-Fe can behave as correlated electrons at high temperatures.Comment: 7 pages, 3 figures, to be published in J. Phys. Soc. Jpn. Vol.78, No.9 (2009
    corecore