614 research outputs found
Pressure induced structural and dynamical changes in liquid Si. An ab-initio study
The static and dynamic properties of liquid Si at high-pressure have been
studied using the orbital free ab-initio molecular dynamics method. Four
thermodynamic states at pressures 4, 8, 14 and 23 GPa are considered. The
calculated static structure shows qualitative agreement with the available
experimental data. We analize the remarkable structural changes occurring
between 8 and 14 GPa along with its effect on several dynamic properties.Comment: 10 pages, 11 figures. Accepted for publication in Journal of Physics:
Condensed Matte
Density fluctuations and single-particle dynamics in liquid lithium
The single-particle and collective dynamical properties of liquid lithium
have been evaluated at several thermodynamic states near the triple point. This
is performed within the framework of mode-coupling theory, using a
self-consistent scheme which, starting from the known static structure of the
liquid, allows the theoretical calculation of several dynamical properties.
Special attention is devoted to several aspects of the single-particle
dynamics, which are discussed as a function of the thermodynamic state. The
results are compared with those of Molecular Dynamics simulations and other
theoretical approaches.Comment: 31 pages (in preprint format), 14 figures. Submitted to Phys. Rev.
Universal and non-universal features of glassy relaxation in propylene carbonate
It is demonstrated that the susceptibility spectra of supercooled propylene
carbonate as measured by depolarized-light-scattering, dielectric-loss, and
incoherent quasi-elastic neutron-scattering spectroscopy within the GHz window
are simultaneously described by the solutions of a two-component schematic
model of the mode-coupling theory (MCT) for the evolution of glassy dynamics.
It is shown that the universal beta-relaxation-scaling laws, dealing with the
asymptotic behavior of the MCT solutions, describe the qualitative features of
the calculated spectra. But the non-universal corrections to the scaling laws
render it impossible to achieve a complete quantitative description using only
the leading-order-asymptotic results.Comment: 37 pages, 16 figures, to be published in Phys. Rev.
The evolution of vibrational excitations in glassy systems
The equations of the mode-coupling theory (MCT) for ideal liquid-glass
transitions are used for a discussion of the evolution of the
density-fluctuation spectra of glass-forming systems for frequencies within the
dynamical window between the band of high-frequency motion and the band of
low-frequency-structural-relaxation processes. It is shown that the strong
interaction between density fluctuations with microscopic wave length and the
arrested glass structure causes an anomalous-oscillation peak, which exhibits
the properties of the so-called boson peak. It produces an elastic modulus
which governs the hybridization of density fluctuations of mesoscopic wave
length with the boson-peak oscillations. This leads to the existence of
high-frequency sound with properties as found by X-ray-scattering spectroscopy
of glasses and glassy liquids. The results of the theory are demonstrated for a
model of the hard-sphere system. It is also derived that certain schematic MCT
models, whose spectra for the stiff-glass states can be expressed by elementary
formulas, provide reasonable approximations for the solutions of the general
MCT equations.Comment: 50 pages, 17 postscript files including 18 figures, to be published
in Phys. Rev.
Dynamics in Colloidal Liquids near a Crossing of Glass- and Gel-Transition Lines
Within the mode-coupling theory for ideal glass-transitions, the mean-squared
displacement and the correlation function for density fluctuations are
evaluated for a colloidal liquid of particles interacting with a square-well
potential for states near the crossing of the line for transitions to a gel
with the line for transitions to a glass. It is demonstrated how the dynamics
is ruled by the interplay of the mechanisms of arrest due to hard-core
repulsion and due to attraction-induced bond formation as well as by a nearby
higher-order glass-transition singularity. Application of the universal
relaxation laws for the slow dynamics near glass-transition singularities
explains the qualitative features of the calculated time dependence of the
mean-squared displacement, which are in accord with the findings obtained in
molecular-dynamics simulation studies by Zaccarelli et. al [Phys. Rev. E 66,
041402 (2002)]. Correlation functions found by photon-correlation spectroscopy
in a micellar system by Mallamace et. al [Phys. Rev. Lett. 84, 5431 2000)] can
be interpreted qualitatively as a crossover from gel to glass dynamics.Comment: 13 pages, 12 figure
The IGF1 small dog haplotype is derived from Middle Eastern grey wolves: a closer look at statistics, sampling, and the alleged Middle Eastern origin of small dogs
This paper is a response to Gray MM, Sutter NB, Ostrander EA, Wayne RK: The IGF1 small dog haplotype is derived from Middle Eastern grey wolves. BMC Biology 2010, 8:16
Multiple-scattering effects on incoherent neutron scattering in glasses and viscous liquids
Incoherent neutron scattering experiments are simulated for simple dynamic
models: a glass (with a smooth distribution of harmonic vibrations) and a
viscous liquid (described by schematic mode-coupling equations). In most
situations multiple scattering has little influence upon spectral
distributions, but it completely distorts the wavenumber-dependent amplitudes.
This explains an anomaly observed in recent experiments
Metastable Dynamics above the Glass Transition
The element of metastability is incorporated in the fluctuating nonlinear
hydrodynamic description of the mode coupling theory (MCT) of the liquid-glass
transition. This is achieved through the introduction of the defect density
variable into the set of slow variables with the mass density and
the momentum density . As a first approximation, we consider the case
where motions associated with are much slower than those associated with
. Self-consistently, assuming one is near a critical surface in the MCT
sense, we find that the observed slowing down of the dynamics corresponds to a
certain limit of a very shallow metastable well and a weak coupling between
and . The metastability parameters as well as the exponents
describing the observed sequence of time relaxations are given as smooth
functions of the temperature without any evidence for a special temperature. We
then investigate the case where the defect dynamics is included. We find that
the slowing down of the dynamics corresponds to the system arranging itself
such that the kinetic coefficient governing the diffusion of the
defects approaches from above a small temperature-dependent value .Comment: 38 pages, 14 figures (6 figs. are included as a uuencoded tar-
compressed file. The rest is available upon request.), RevTEX3.0+eps
Aspects of the dynamics of colloidal suspensions: Further results of the mode-coupling theory of structural relaxation
Results of the idealized mode-coupling theory for the structural relaxation
in suspensions of hard-sphere colloidal particles are presented and discussed
with regard to recent light scattering experiments. The structural relaxation
becomes non-diffusive for long times, contrary to the expectation based on the
de Gennes narrowing concept. A semi-quantitative connection of the wave vector
dependences of the relaxation times and amplitudes of the final
-relaxation explains the approximate scaling observed by Segr{\`e} and
Pusey [Phys. Rev. Lett. {\bf 77}, 771 (1996)]. Asymptotic expansions lead to a
qualitative understanding of density dependences in generalized Stokes-Einstein
relations. This relation is also generalized to non-zero frequencies thereby
yielding support for a reasoning by Mason and Weitz [Phys. Rev. Lett {\bf 74},
1250 (1995)]. The dynamics transient to the structural relaxation is discussed
with models incorporating short-time diffusion and hydrodynamic interactions
for short times.Comment: 11 pages, 9 figures; to be published in Phys. Rev.
- …