615 research outputs found

    Pressure induced structural and dynamical changes in liquid Si. An ab-initio study

    Full text link
    The static and dynamic properties of liquid Si at high-pressure have been studied using the orbital free ab-initio molecular dynamics method. Four thermodynamic states at pressures 4, 8, 14 and 23 GPa are considered. The calculated static structure shows qualitative agreement with the available experimental data. We analize the remarkable structural changes occurring between 8 and 14 GPa along with its effect on several dynamic properties.Comment: 10 pages, 11 figures. Accepted for publication in Journal of Physics: Condensed Matte

    Density fluctuations and single-particle dynamics in liquid lithium

    Full text link
    The single-particle and collective dynamical properties of liquid lithium have been evaluated at several thermodynamic states near the triple point. This is performed within the framework of mode-coupling theory, using a self-consistent scheme which, starting from the known static structure of the liquid, allows the theoretical calculation of several dynamical properties. Special attention is devoted to several aspects of the single-particle dynamics, which are discussed as a function of the thermodynamic state. The results are compared with those of Molecular Dynamics simulations and other theoretical approaches.Comment: 31 pages (in preprint format), 14 figures. Submitted to Phys. Rev.

    Universal and non-universal features of glassy relaxation in propylene carbonate

    Full text link
    It is demonstrated that the susceptibility spectra of supercooled propylene carbonate as measured by depolarized-light-scattering, dielectric-loss, and incoherent quasi-elastic neutron-scattering spectroscopy within the GHz window are simultaneously described by the solutions of a two-component schematic model of the mode-coupling theory (MCT) for the evolution of glassy dynamics. It is shown that the universal beta-relaxation-scaling laws, dealing with the asymptotic behavior of the MCT solutions, describe the qualitative features of the calculated spectra. But the non-universal corrections to the scaling laws render it impossible to achieve a complete quantitative description using only the leading-order-asymptotic results.Comment: 37 pages, 16 figures, to be published in Phys. Rev.

    The evolution of vibrational excitations in glassy systems

    Full text link
    The equations of the mode-coupling theory (MCT) for ideal liquid-glass transitions are used for a discussion of the evolution of the density-fluctuation spectra of glass-forming systems for frequencies within the dynamical window between the band of high-frequency motion and the band of low-frequency-structural-relaxation processes. It is shown that the strong interaction between density fluctuations with microscopic wave length and the arrested glass structure causes an anomalous-oscillation peak, which exhibits the properties of the so-called boson peak. It produces an elastic modulus which governs the hybridization of density fluctuations of mesoscopic wave length with the boson-peak oscillations. This leads to the existence of high-frequency sound with properties as found by X-ray-scattering spectroscopy of glasses and glassy liquids. The results of the theory are demonstrated for a model of the hard-sphere system. It is also derived that certain schematic MCT models, whose spectra for the stiff-glass states can be expressed by elementary formulas, provide reasonable approximations for the solutions of the general MCT equations.Comment: 50 pages, 17 postscript files including 18 figures, to be published in Phys. Rev.

    Dynamics in Colloidal Liquids near a Crossing of Glass- and Gel-Transition Lines

    Full text link
    Within the mode-coupling theory for ideal glass-transitions, the mean-squared displacement and the correlation function for density fluctuations are evaluated for a colloidal liquid of particles interacting with a square-well potential for states near the crossing of the line for transitions to a gel with the line for transitions to a glass. It is demonstrated how the dynamics is ruled by the interplay of the mechanisms of arrest due to hard-core repulsion and due to attraction-induced bond formation as well as by a nearby higher-order glass-transition singularity. Application of the universal relaxation laws for the slow dynamics near glass-transition singularities explains the qualitative features of the calculated time dependence of the mean-squared displacement, which are in accord with the findings obtained in molecular-dynamics simulation studies by Zaccarelli et. al [Phys. Rev. E 66, 041402 (2002)]. Correlation functions found by photon-correlation spectroscopy in a micellar system by Mallamace et. al [Phys. Rev. Lett. 84, 5431 2000)] can be interpreted qualitatively as a crossover from gel to glass dynamics.Comment: 13 pages, 12 figure

    Multiple-scattering effects on incoherent neutron scattering in glasses and viscous liquids

    Full text link
    Incoherent neutron scattering experiments are simulated for simple dynamic models: a glass (with a smooth distribution of harmonic vibrations) and a viscous liquid (described by schematic mode-coupling equations). In most situations multiple scattering has little influence upon spectral distributions, but it completely distorts the wavenumber-dependent amplitudes. This explains an anomaly observed in recent experiments

    Metastable Dynamics above the Glass Transition

    Full text link
    The element of metastability is incorporated in the fluctuating nonlinear hydrodynamic description of the mode coupling theory (MCT) of the liquid-glass transition. This is achieved through the introduction of the defect density variable nn into the set of slow variables with the mass density ρ\rho and the momentum density g{\bf g}. As a first approximation, we consider the case where motions associated with nn are much slower than those associated with ρ\rho. Self-consistently, assuming one is near a critical surface in the MCT sense, we find that the observed slowing down of the dynamics corresponds to a certain limit of a very shallow metastable well and a weak coupling between ρ\rho and nn. The metastability parameters as well as the exponents describing the observed sequence of time relaxations are given as smooth functions of the temperature without any evidence for a special temperature. We then investigate the case where the defect dynamics is included. We find that the slowing down of the dynamics corresponds to the system arranging itself such that the kinetic coefficient γv\gamma_v governing the diffusion of the defects approaches from above a small temperature-dependent value γvc\gamma^c_v.Comment: 38 pages, 14 figures (6 figs. are included as a uuencoded tar- compressed file. The rest is available upon request.), RevTEX3.0+eps

    Aspects of the dynamics of colloidal suspensions: Further results of the mode-coupling theory of structural relaxation

    Full text link
    Results of the idealized mode-coupling theory for the structural relaxation in suspensions of hard-sphere colloidal particles are presented and discussed with regard to recent light scattering experiments. The structural relaxation becomes non-diffusive for long times, contrary to the expectation based on the de Gennes narrowing concept. A semi-quantitative connection of the wave vector dependences of the relaxation times and amplitudes of the final α\alpha-relaxation explains the approximate scaling observed by Segr{\`e} and Pusey [Phys. Rev. Lett. {\bf 77}, 771 (1996)]. Asymptotic expansions lead to a qualitative understanding of density dependences in generalized Stokes-Einstein relations. This relation is also generalized to non-zero frequencies thereby yielding support for a reasoning by Mason and Weitz [Phys. Rev. Lett {\bf 74}, 1250 (1995)]. The dynamics transient to the structural relaxation is discussed with models incorporating short-time diffusion and hydrodynamic interactions for short times.Comment: 11 pages, 9 figures; to be published in Phys. Rev.
    corecore