80 research outputs found
All-fibre source of amplitude-squeezed light pulses
An all-fibre source of amplitude squeezed solitons utilizing the self-phase
modulation in an asymmetric Sagnac interferometer is experimentally
demonstrated. The asymmetry of the interferometer is passively controlled by an
integrated fibre coupler, allowing for the optimisation of the noise reduction.
We have carefully studied the dependence of the amplitude noise on the
asymmetry and the power launched into the Sagnac interferometer. Qualitatively,
we find good agreement between the experimental results, a semi-classical
theory and earlier numerical calculations [Schmitt etl.al., PRL Vol. 81,
p.2446, (1998)]. The stability and flexibility of this all-fibre source makes
it particularly well suited to applications in quantum information science
Many-body quantum dynamics of polarisation squeezing in optical fibre
We report new experiments that test quantum dynamical predictions of
polarization squeezing for ultrashort photonic pulses in a birefringent fibre,
including all relevant dissipative effects. This exponentially complex
many-body problem is solved by means of a stochastic phase-space method. The
squeezing is calculated and compared to experimental data, resulting in
excellent quantitative agreement. From the simulations, we identify the
physical limits to quantum noise reduction in optical fibres. The research
represents a significant experimental test of first-principles time-domain
quantum dynamics in a one-dimensional interacting Bose gas coupled to
dissipative reservoirs.Comment: 4 pages, 4 figure
Scalar and vector modulation instabilities induced by vacuum fluctuations in fibers: numerical study
We study scalar and vector modulation instabilities induced by the vacuum
fluctuations in birefringent optical fibers. To this end, stochastic coupled
nonlinear Schrodinger equations are derived. The stochastic model is equivalent
to the quantum field operators equations and allow for dispersion,
nonlinearity, and arbitrary level of birefringence. Numerical integration of
the stochastic equations is compared to analytical formulas in the case of
scalar modulation instability and non depleted pump approximation. The effect
of classical noise and its competition with vacuum fluctuations for inducing
modulation instability is also addressed.Comment: 33 pages, 5 figure
Nonclassical correlations in damped quantum solitons
Using cumulant expansion in Gaussian approximation, the internal quantum
statistics of damped soliton-like pulses in Kerr media are studied numerically,
considering both narrow and finite bandwidth spectral pulse components. It is
shown that the sub-Poissonian statistics can be enhanced, under certain
circumstances, by absorption, which damps out some destructive interferences.
Further, it is shown that both the photon-number correlation and the
correlation of the photon-number variance between different pulse components
can be highly nonclassical even for an absorbing fiber. Optimum frequency
windows are determined in order to realize strong nonclassical behavior, which
offers novel possibilities of using solitons in optical fibers as a source of
nonclassically correlated light beams.Comment: 15 pages, 11 PS figures (color
The Einstein-Podolsky-Rosen paradox: from concepts to applications
This Colloquium examines the field of the EPR Gedankenexperiment, from the
original paper of Einstein, Podolsky and Rosen, through to modern theoretical
proposals of how to realize both the continuous-variable and discrete versions
of the EPR paradox. We analyze the relationship with entanglement and Bell's
theorem, and summarize the progress to date towards experimental confirmation
of the EPR paradox, with a detailed treatment of the continuous-variable
paradox in laser-based experiments. Practical techniques covered include
continuous-wave parametric amplifier and optical fibre quantum soliton
experiments. We discuss current proposals for extending EPR experiments to
massive-particle systems, including spin-squeezing, atomic position entangle-
ment, and quadrature entanglement in ultra-cold atoms. Finally, we examine
applications of this technology to quantum key distribution, quantum
teleportation and entanglement-swapping.Comment: Colloquium in press in Reviews of Modern Physics, accepted Dec 200
Simulations and Experiments on Polarisation Squeezing in Optical Fibre
We investigate polarisation squeezing of ultrashort pulses in optical fibre,
over a wide range of input energies and fibre lengths. Comparisons are made
between experimental data and quantum dynamical simulations, to find good
quantitative agreement. The numerical calculations, performed using both
truncated Wigner and exact phase-space methods, include nonlinear and
stochastic Raman effects, through coupling to phonons variables. The
simulations reveal that excess phase noise, such as from depolarising GAWBS,
affects squeezing at low input energies, while Raman effects cause a marked
deterioration of squeezing at higher energies and longer fibre lengths. The
optimum fibre length for maximum squeezing is also calculated.Comment: 19 pages, lots of figure
Tunnelling Studies of Two-Dimensional States in Semiconductors with Inverted Band Structure: Spin-orbit Splitting, Resonant Broadening
The results of tunnelling studies of the energy spectrum of two-dimensional
(2D) states in a surface quantum well in a semiconductor with inverted band
structure are presented. The energy dependence of quasimomentum of the 2D
states over a wide energy range is obtained from the analysis of tunnelling
conductivity oscillations in a quantizing magnetic field. The spin-orbit
splitting of the energy spectrum of 2D states, due to inversion asymmetry of
the surface quantum well, and the broadening of 2D states at the energies, when
they are in resonance with the heavy hole valence band, are investigated in
structures with different strength of the surface quantum well. A quantitative
analysis is carried out within the framework of the Kane model of the energy
spectrum. The theoretical results are in good agreement with the tunnelling
spectroscopy data.Comment: 29 pages, RevTeX, submitted in Phys.Rev.B. Figures available on
request from [email protected]
Soliton back-action evading measurement using spectral filtering
We report on a back-action evading (BAE) measurement of the photon number of
fiber optical solitons operating in the quantum regime. We employ a novel
detection scheme based on spectral filtering of colliding optical solitons. The
measurements of the BAE criteria demonstrate significant quantum state
preparation and transfer of the input signal to the signal and probe outputs
exiting the apparatus, displaying the quantum-nondemolition (QND) behavior of
the experiment.Comment: 5 pages, 5 figure
- …