13 research outputs found

    Neural network-based model for evaluating inert nodules and volume doubling time in T1 lung adenocarcinoma: a nested case−control study

    Get PDF
    ObjectiveThe purpose of this study is to establish model for assessing inert nodules predicting nodule volume-doubling.MethodsA total of 201 patients with T1 lung adenocarcinoma were analysed retrospectively pulmonary nodule information was predicted by an AI pulmonary nodule auxiliary diagnosis system. The nodules were classified into two groups: inert nodules (volume-doubling time (VDT)>600 days n=152) noninert nodules (VDT<600 days n=49). Then taking the clinical imaging features obtained at the first examination as predictive variables the inert nodule judgement model <sn</sn>>(INM) volume-doubling time estimation model (VDTM) were constructed based on a deep learning-based neural network. The performance of the INM was evaluated by the area under the curve (AUC) obtained from receiver operating characteristic (ROC) analysis the performance of the VDTM was evaluated by R2(determination coefficient).ResultsThe accuracy of the INM in the training and testing cohorts was 81.13% and 77.50%, respectively. The AUC of the INM in the training and testing cohorts was 0.7707 (95% CI 0.6779-0.8636) and 0.7700 (95% CI 0.5988-0.9412), respectively. The INM was effective in identifying inert pulmonary nodules; additionally, the R2 of the VDTM in the training cohort was 0.8008, and that in the testing cohort was 0.6268. The VDTM showed moderate performance in estimating the VDT, which can provide some reference during a patients’ first examination and consultationConclusionThe INM and the VDTM based on deep learning can help radiologists and clinicians distinguish among inert nodules and predict the nodule volume-doubling time to accurately treat patients with pulmonary nodules

    l-Tryptophan synergistically increased carotenoid accumulation with blue light in maize (Zea mays L.) sprouts

    No full text
    In the present study, l-tryptophan was applied in combination with blue light to modulate carotenoid biosynthesis in maize sprouts. The profiles of carotenoids, chlorophylls, and relative genes in carotenoid biosynthesis and light signaling pathways were studied. l-tryptophan and blue light both promoted the accumulation of carotenoids, and their combination further increased carotenoid content by 120%. l-tryptophan exerted auxin-like effects and stimulated PSY expression in blue light exposure maize sprouts, resulting in increased α- and ÎČ- carotenes. l-tryptophan could also play a photoprotective role through the xanthophyll cycle under blue light. In addition, CRY in the light signaling pathway was critical for carotenoid biosynthesis. These findings provide new insights into the regulation of carotenoid biosynthesis and l-tryptophan could be used in conjunction with blue light to fortify carotenoids in maize sprouts

    Insights into tissue-specific anthocyanin accumulation in Japanese plum (Prunus salicina L.) fruits: A comparative study of three cultivars

    No full text
    In the present study, three matured Japanese plum cultivars with different colored peel and flesh were selected to mine the key transcription factors regulating anthocyanin formation in tissues. Results showed that PsMYB10 was correlated with structural genes C4H, F3H, and ANS. PsMYB6 could positively regulate C4H (r = 0.732) and accumulated anthocyanins in Sanhua plum’s flesh. Sanhua plum has the highest phenolic and anthocyanin contents (10.24 ± 0.37 gallic acid equivalent mg g−1 dry weight (DW) and 68.95 ± 1.03 ÎŒg g−1 DW), resulting itself superior biological activity as 367.1 ± 42.9 Trolox equivalent mg g−1 DW in oxygen radical absorbance capacity value and 72.79 ± 4.34 quercetin equivalent mg g−1 DW in cellular antioxidant activity value. The present work provides new insights into the regulatory mechanism of tissue-specific anthocyanin biosynthesis, confirming the pivotal role of anthocyanins in the biological activity of plums, providing essential support for the development of horticultural products enriched with anthocyanins

    An Experimental Evaluation of Toxicity Effects of Sodium Chloride on Oviposition, Hatching and Larval Development of Aedes albopictus

    No full text
    Dengue virus, one of the most important mosquito-borne viruses, has shown a sharp upward trend, spreading around the world in recent years. Control of vectors Aedes aegypti and Ae. albopictus remains crucial for blocking dengue transmission. The lethal ovitrap (LO) is one of the cost-effective traps based on the classic “lure and kill” strategy, and finding a proper long-lasting effective toxin is key to achieving the desired effect. The concentration of inorganic salts of habitat environment plays a strong role in affecting oviposition, hatching, and development of mosquitoes, but the potential insecticide activity of Sodium Chloride (NaCl) in habitat water as well as LO still lacks research. In this study, we carried out laboratory experiments to systematically explore the effects of different concentrations of NaCl solutions on oviposition, egg hatching, and larval development of Ae. albopictus. Consequently, Ae. albopictus was found to prefer freshwater to lay eggs; whereas 48.8 ± 2.6% eggs were laid in freshwater and 20% in ≥1.0% brackish water, few eggs were laid in 3.0% NaCl solution. Compared with egg hatching, larval development of Ae. albopictus presented a higher sensibility to NaCl concentration. The mortality of the 3rd–4th larvae in 1.0% NaCl solution was 83.8 ± 8.7%, while in 3.0% it reached 100%. Considering the cumulative effect of NaCl, when NaCl concentration was ≥1.0%, no eggs could successfully develop into adults. These data suggested that NaCl solutions with a concentration ≥1.0% can be used as an effective cheap insecticide for Ae. albopictus in subtropical inland aquatic habitats, and also as the “kill” toxin in LOs. Meanwhile, the concentration range from 0 to 2.0% of NaCl solution has the potential to be used as the “lure” in LOs. The technological processes of how to use NaCl as insecticide or in LOs still needs further in-depth exploration

    Comparative Study on Trace Element Excretions between Nonanuric and Anuric Patients Undergoing Continuous Ambulatory Peritoneal Dialysis

    No full text
    Few studies have been reported on alterations of trace elements (TE) in peritoneal dialysis patients. Our objective was to investigate and assess the characteristics of daily TE excretions in continuous ambulatory peritoneal dialysis (CAPD) patients. This cross-sectional study included 61 CAPD patients (nonanuric/anuric: 45/16) and 11 healthy subjects in Wuhan, China between 2013 and 2014. The dialysate and urine of patients and urine of healthy subjects were collected. The concentrations of copper (Cu), zinc (Zn), selenium (Se), molybdenum (Mo), and arsenic (As) in dialysate and urine were determined using inductively coupled plasma mass spectrometer (ICP-MS). Various clinical variables were obtained from automatic biochemical analyzer. Daily Cu, Zn, Se, and Mo excretions in nonanuric patients were higher than healthy subjects, while arsenic excretion in anuric patients was lower. A strong and positive correlation was observed between Se and Mo excretion in both dialysate (ÎČ = 0.869, p < 0.010) and urine (ÎČ = 0.968, p < 0.010). Furthermore, the clinical variables associated with Se excretion were found to be correlated with Mo excretion. Our findings indicated that nonanuric CAPD patients may suffer from deficiency of some essential TEs, while anuric patients are at risk of arsenic accumulation. A close association between Se and Mo excretion was also found

    Green Tea Polyphenols Ameliorate the Early Renal Damage Induced by a High-Fat Diet via Ketogenesis/SIRT3 Pathway

    No full text
    Scope. Several reports in the literature have suggested the renoprotective effects of ketone bodies and green tea polyphenols (GTPs). Our previous study found that GTP consumption could elevate the renal expression of the ketogenic rate-limiting enzyme, which was decreased by a high-fat diet (HFD) in rats. Here, we investigated whether ketogenesis can mediate renoprotection by GTPs against an HFD. Methods and Results. Wistar rats were fed a standard or HFD with or without GTPs for 18 weeks. The renal oxidative stress level, kidney function, renal expression, and activity levels of mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase 2 (HMGCS2) and sirtuin 3(SIRT3) were detected. The increased renal oxidative stress and the loss of renal function induced by the HFD were ameliorated by GTPs. Renal ketogenesis and SIRT3 expression and activity levels, which were reduced by the HFD, were restored by GTPs. In vitro, HEK293 cells were transfected with the eukaryotic expression plasmid pcDNA HMGCS2. GTP treatment could upregulate HMGCS2 and SIRT3 expression. Although SIRT3 expression was not affected by HMGCS2 transfection, the 4-hydroxy-2-nonenal (4-HNE) level and the acetyl-MnSOD (K122)/MnSOD ratio were reduced in HMGCS2-transfected cells in the context of H2O2. Conclusion. The ketogenesis/SIRT3 pathway mediates the renoprotection of GTPs against the oxidative stress induced by an HFD

    Green Tea Polyphenols, Mimicking the Effects of Dietary Restriction, Ameliorate High-Fat Diet-Induced Kidney Injury via Regulating Autophagy Flux

    No full text
    Epidemiological and experimental studies reveal that Western dietary patterns contribute to chronic kidney disease, whereas dietary restriction (DR) or dietary polyphenols such as green tea polyphenols (GTPs) can ameliorate the progression of kidney injury. This study aimed to investigate the renal protective effects of GTPs and explore the underlying mechanisms. Sixty Wistar rats were randomly divided into 6 groups: standard diet (STD), DR, high-fat diet (HFD), and three diets plus 200 mg/kg(bw)/day GTPs, respectively. After 18 weeks, HFD group exhibited renal injuries by increased serum cystatin C levels and urinary N-acetyl-ÎČ-d-glucosaminidase activity, which can be ameliorated by GTPs. Meanwhile, autophagy impairment as denoted by autophagy-lysosome related proteins, including LC3-II, Beclin-1, p62, cathepsin B, cathepsin D and LAMP-1, was observed in HFD group, whereas DR or GTPs promoted renal autophagy activities and GTPs ameliorated HFD-induced autophagy impairment. In vitro, autophagy flux suppression was detected in palmitic acid (PA)-treated human proximal tubular epithelial cells (HK-2), which was ameliorated by epigallocatechin-3-gallate (EGCG). Furthermore, GTPs (or EGCG) elevated phosphorylation of AMP-activated protein kinase in the kidneys of HFD-treated rats and in PA-treated HK-2 cells. These findings revealed that GTPs mimic the effects of DR to induce autophagy and exert a renal protective effect by alleviating HFD-induced autophagy suppression

    Prevalence and correlates of fatigue and its association with quality of life among clinically stable older psychiatric patients during the COVID-19 outbreak: A cross-sectional study

    No full text
    Background: The pattern of fatigue in older psychiatric patients during the COVID-19 outbreak was unknown. This study examined the prevalence of fatigue and its association with overall quality of life (overall QOL) in clinically stable older patients with psychiatric disorders during the COVID-19 outbreak. Methods: This was a multicenter, cross-sectional study. Fatigue, depressive symptoms, pain, insomnia symptoms, and overall QOL were assessed with standardized instruments. Results: A total of 1063 patients were recruited. The prevalence of fatigue was 47.1% (95%CI: 44.1–50.1%). An analysis of covariance revealed that overall QOL was significantly lower in patients with fatigue compared to those without (P = 0.011). A multiple logistic regression analysis revealed that more severe depressive symptoms (OR = 1.15, P \u3c 0.001), insomnia symptoms (OR = 1.08, P \u3c 0.001) and pain (OR = 1.43, P \u3c 0.001) were significantly associated with fatigue. Conclusions: Fatigue is common among clinically stable older patients with psychiatric disorders during the COVID-19 outbreak. Considering its negative impact on overall QOL, regular assessment of fatigue and appropriate treatment warrant attention in this subpopulation

    Reduction of depression-like behavior in rat model induced by ShRNA targeting norepinephrine transporter in locus coeruleus

    No full text
    Depression may be associated with reduced monoamine neurotransmission, particularly serotonin and norepinephrine (NE). Reuptake of NE by the norepinephrine transporter (NET) is the primary mechanism by which many of the antidepressants are high-affinity substrates for NET. This study aimed to examine the effect of lentivirus-mediated shRNA targeting NET in locus coeruleus (LC) on depression-like behaviors of rats. We randomly assigned 60 male Wistar rats to 6 experimental groups: (1) Control group: without chronic unpredictable mild stress (CUMS) and without NET-shRNA treatment; (2) shRNA group: without CUMS + NET-shRNA; (3) CUMS group: 3-week CUMS without NET-shRNA; (4) CUMS + nonsense shRNA group; (5) CUMS + amygdala (Amy)-shRNA group; (6) CUMS+ locus coeruleus (LC)-shRNA group. First, recombinant lentiviral vector expressing shRNA (ShRNA-629, ShRNA-330, ShRNA-1222, ShRNA-1146 or ShRNA- negative control) against NET were produced, and their efficiency in knocking down of NET in PC12 cells were assessed by Q-PCR and western blot analysis. Second, shRNA was injected into the rat LC bilaterally to investigate whether it could prevent the depressive-like behavior induced by 3-week CUMS. Third, we tested the depressive-like behavior of the rats in the forced swimming test, the open field test, the sucrose preference test, as well as the body weight gain at the end of the seventh week. Finally, the protein expressions of NET was measured by western blot and the NE levels were measured by high performance liquid chromatography. Q-PCR and western blot showed that the ShRNA-1146 had the best interference efficiency targeting on NET in PC12 cells (p &lt; 0.01). Compared to the depression model group, the immobility time in the forced swimming test was significantly reduced (p &lt; 0.01), but the sucrose preference and the total scores in the open field test were significantly increased (all p &lt; 0.01) in the group treated with shRNA in LC. Furthermore, compared with the depression model group, NET levels were significantly decreased (p &lt; 0.01), but NE levels were significantly increased in the group treated with shRNA in LC (p &lt; 0.05). Our findings suggest that Lentivirus-mediated shRNA targeting NET in LC downregulated NET both in vitro and in vivo, resulting in a significant decrease in depressive-like behavior of rats.</p
    corecore