448 research outputs found

    A n-qubit controlled phase gate with superconducting quantum interference devices coupled to a resonator

    Full text link
    We present a way to realize a nn-qubit controlled phase gate with superconducting quantum interference devices (SQUIDs) by coupling them to a superconducting resonator. In this proposal, the two logical states of a qubit are represented by the two lowest levels of a SQUID. An intermediate level of each SQUID is utilized to facilitate coherent control and manipulation of quantum states of the qubits. It is interesting to note that a nn-qubit controlled phase gate can be achieved with nn SQUIDs by successively applying a π/2\pi /2 Jaynes-Cummings pulse to each of the n−1n-1 control SQUIDs before and after a π\pi Jaynes-Cummings pulse on the target SQUID.Comment: 9 pages, 4 figures, 1 table, RevTeX, Resubmitted to Phys. Rev.

    A unified approach to realize universal quantum gates in a coupled two-qubit system with fixed always-on coupling

    Full text link
    We demonstrate that in a coupled two-qubit system any single-qubit gate can be decomposed into two conditional two-qubit gates and that any conditional two-qubit gate can be implemented by a manipulation analogous to that used for a controlled two-qubit gate. Based on this we present a unified approach to implement universal single-qubit and two-qubit gates in a coupled two-qubit system with fixed always-on coupling. This approach requires neither supplementary circuit or additional physical qubits to control the coupling nor extra hardware to adjust the energy level structure. The feasibility of this approach is demonstrated by numerical simulation of single-qubit gates and creation of two-qubit Bell states in rf-driven inductively coupled two SQUID flux qubits with realistic device parameters and constant always-on coupling.Comment: 4 pages, 3 figure

    Generation of GHZ entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction

    Full text link
    We propose an efficient method to generate a GHZ entangled state of n photons in n microwave cavities (or resonators) via resonant interaction to a single superconducting qutrit. The deployment of a qutrit, instead of a qubit, as the coupler enables us to use resonant interactions exclusively for all qutrit-cavity and qutrit-pulse operations. This unique approach significantly shortens the time of operation which is advantageous to reducing the adverse effects of qutrit decoherence and cavity decay on fidelity of the protocol. Furthermore, the protocol involves no measurement on either the state of qutrit or cavity photons. We also show that the protocol can be generalized to other systems by replacing the superconducting qutrit coupler with different types of physical qutrit, such as an atom in the case of cavity QED, to accomplish the same task.Comment: 11 pages, 5 figures, accepted by Phys. Rev.

    Quantum logical gates with four-level SQUIDs coupled to a superconducting resonator

    Full text link
    We propose a way for realizing a two-qubit controlled phase gate with superconducting quantum interference devices (SQUIDs) coupled to a superconducting resonator. In this proposal, the two lowest levels of each SQUID serve as the logical states and two intermediate levels of each SQUID are used for the gate realization. We show that neither adjustment of SQUID level spacings during the gate operation nor uniformity in SQUID parameters is required by this proposal. In addition, this proposal does not require the adiabatic passage or a second-order detuning and thus the gate is much faster.Comment: 6 pages, 3 figure

    Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit

    Get PDF
    We discuss how to generate entangled coherent states of four \textrm{microwave} resonators \textrm{(a.k.a. cavities)} coupled by a superconducting qubit. We also show \textrm{that} a GHZ state of four superconducting qubits embedded in four different resonators \textrm{can be created with this scheme}. In principle, \textrm{the proposed method} can be extended to create an entangled coherent state of nn resonators and to prepare a Greenberger-Horne-Zeilinger (GHZ) state of nn qubits distributed over nn cavities in a quantum network. In addition, it is noted that four resonators coupled by a coupler qubit may be used as a basic circuit block to build a two-dimensional quantum network, which is useful for scalable quantum information processing.Comment: 13 pages, 7 figure

    Development of Protective Gloves for Gardening

    Get PDF
    A house with a beautiful yard will not only increase the property value but also help the owner fit into a local community (Robbins, Polderman, & Birkenholtz, 2001), build connections with neighbors, and demonstrate personal values (Nassauer, 1988). Moreover, gardening could benefit people of different ages. Gardening practice teaches children patience, establishes a moral code, enhances a sense of responsibility, develops the love of nature and improves social cohesion (Montessori, 1964)

    Angiotensin II Type 1 Receptor Autoantibodies in Primary Aldosteronism

    Get PDF
    Primary aldosteronism (PA) is the most common form of endocrine hypertension. Agonistic autoantibodies against the angiotensin II type 1 receptor (AT(1)R-Abs) have been described in transplantation medicine and women with pre-eclampsia and more recently in patients with PA. Any functional role of AT(1)R-Abs in either of the two main subtypes of PA (aldosterone-producing adenoma or bilateral adrenal hyperplasia) requires clarification. In this review, we discuss the studies performed to date on AT(1)R-Abs in PA

    Single-photon-driven high-order sideband transitions in an ultrastrongly coupled circuit quantum electrodynamics system

    Get PDF
    We report the experimental observation of high-order sideband transitions at the single-photon level in a quantum circuit system of a flux qubit ultrastrongly coupled to a coplanar waveguide resonator. With the coupling strength reaching 10% of the resonator's fundamental frequency, we obtain clear signatures of higher-order red and first-order blue-sideband transitions, which are mainly due to the ultrastrong Rabi coupling. Our observation advances the understanding of ultrastrongly-coupled systems and paves the way to study high-order processes in the quantum Rabi model at the single-photon level.Comment: Accepted in Physical Review A. 12 pages, 6 figure
    • …
    corecore