214 research outputs found

    Solving the Jitter Problem in Microwave Compressed Ultrafast Electron Diffraction Instruments: Robust Sub-50 fs Cavity-Laser Phase Stabilization

    Full text link
    We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction (UED) instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically and the long-term arrival time stability (>>10 hours) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization.Comment: Accepted for publication in Structural Dynamic

    Ultrafast Phonon-Diffuse Scattering as a Tool for Observing Chiral Phonons in Monolayer Hexagonal Lattices

    Full text link
    At the 2D limit, hexagonal systems such as monolayer transition metal dichalcogenides (TMDs) and graphene exhibit unique coupled spin and momentum-valley physics (valley pseudospin) owing to broken spatial inversion symmetry and strong spin-orbit coupling. Circularly polarized light provides the means for pseudospin-selective excitation of excitons (or electrons and holes) and can yield momentum-valley polarized populations of carriers that are the subject of proposed valleytronic applications. The chirality of these excited carriers have important consequences for the available relaxation/scattering pathways, which must conserve (pseudo)angular momentum as well as energy. One available relaxation channel that satisfies these constraints is coupling to chiral phonons. Here we show that chiral carrier-phonon coupling following valley-polarized photoexcitation is expected to leads to a strongly valley-polarized chiral phonon distribution that is directly measurable using ultrafast phonon-diffuse scattering techniques. Using ab-initio calculations we show how the dynamic phonon occupations and valley anisotropy determined by nonequilibrium observations can provide a new window on the physical processes that drive carrier valley-depolarization in monolayer TMDs

    Ultrafast Electron Diffuse Scattering as a Tool for Studying Phonon Transport: Phonon Hydrodynamics and Second Sound Oscillations

    Full text link
    Hydrodynamic phonon transport phenomena, like second sound, have been observed in liquid Helium temperatures more than 50 years ago. More recently second sound has been observed in graphite at over 200\,K using transient thermal grating techniques. In this work we explore the signatures of second sound in ultrafast electron diffuse scattering (UEDS) patterns. We use density functional theory and solve the Boltzmann transport equation to determine time-resolved non-equilibrium phonon populations and subsequently calculate one-phonon structure factors and diffuse scattering patterns to simulate experimental data covering the regimes of ballistic, diffusive, and hydrodynamic phonon transport. For systems like graphite, UEDS is capable of extracting time-dependent phonon occupancies across the entire Brillouin zone and ultimately lead to a more fundamental understanding of the hydrodynamic phonon transport regime.Comment: 7 pages, 4 figure

    New electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range

    Get PDF
    We present a method for producing sub-100 fs electron bunches that are suitable for single-shot ultrafast electron diffraction experiments in the 100 keV energy range. A combination of analytical results and state-of-the-art numerical simulations show that it is possible to create 100 keV, 0.1 pC, 20 fs electron bunches with a spotsize smaller than 500 micron and a transverse coherence length of 3 nm, using established technologies in a table-top set-up. The system operates in the space-charge dominated regime to produce energy-correlated bunches that are recompressed by established radio-frequency techniques. With this approach we overcome the Coulomb expansion of the bunch, providing an entirely new ultrafast electron diffraction source concept

    Generation of sub-fs electron beams at few-MeV energies

    Full text link
    Time resolved electron diffraction is an alternative approach to FEL based X-ray experiments for the study of structural dynamics of matter on the relevant timescales. The required electron beam parameters are demanding in terms of emittance and bunch length and require the operation at charges typically well below 1 pC. Moreover the energy is low – a few MeV only. The longitudinal compression of the bunches can be realized with a simple longitudinal focusing scheme in a drift. In this paper the question of what limits the bunch length in this parameter regime is addressed by means of numerical simulations. Beside emittance increasing space charge effects also rf-curvature and nonlinear compression are identified as limiting factors

    Ultrafast Electron Diffraction: Visualizing Dynamic States of Matter

    Get PDF
    Since the discovery of electron-wave duality, electron scattering instrumentation has developed into a powerful array of techniques for revealing the atomic structure of matter. Beyond detecting local lattice variations in equilibrium structures with the highest possible spatial resolution, recent research efforts have been directed towards the long sought-after dream of visualizing the dynamic evolution of matter in real-time. The atomic behavior at ultrafast timescales carries critical information on phase transition and chemical reaction dynamics, the coupling of electronic and nuclear degrees of freedom in materials and molecules, the correlation between structure, function and previously hidden metastable or nonequilibrium states of matter. Ultrafast electron pulses play an essential role in this scientific endeavor, and their generation has been facilitated by rapid technical advances in both ultrafast laser and particle accelerator technologies. This review presents a summary of the remarkable developments in this field over the last few decades. The physics and technology of ultrafast electron beams is presented with an emphasis on the figures of merit most relevant for ultrafast electron diffraction (UED) experiments. We discuss recent developments in the generation, manipulation and characterization of ultrashort electron beams aimed at improving the combined spatio-temporal resolution of these measurements. The fundamentals of electron scattering from atomic matter and the theoretical frameworks for retrieving dynamic structural information from solid-state and gas-phase samples is described. Essential experimental techniques and several landmark works that have applied these approaches are also highlighted to demonstrate the widening applicability of these methods. Ultrafast electron probes with ever improving capabilities, combined with other complementary photon-based or spectroscopic approaches, hold tremendous potential for revolutionizing our ability to observe and understand energy and matter at atomic scales
    • …
    corecore