29 research outputs found

    単層CNTを用いた液体/固体の熱伝導率増大効果

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学

    Evaporation kinetics of pure water drops: Thermal patterns, Marangoni flow, and interfacial temperature difference

    Get PDF
    We report a systematic study on the role of Marangoni convection on the evaporation kinetics of pure water drops, considering the influence of heating regime and surface wettability. The Marangoni flows were induced via heating under constant wall temperature (uniform heating) and constant heat flux (local heating) regimes below the drops. To visualize the thermal patterns/flows emerging within the water drops we employed infrared (IR) thermography and we captured the evolution of the drop profile with a CCD camera to follow the evaporation kinetics of each drop. We observed a strong correlation between the temperature difference within the drop and the evolution of drop shape during different modes of evaporation ({i.e.} constant radius, angle or stick-slip) resulting in different Marangoni flow patterns. Under uniform heating, stable recirculatory vortices due to Marangoni convection emerged at high temperature which faded at later stages of the evaporation process. On the other hand, in the localized heating case, the constant heat flux resulted in a rapid increase of the temperature difference within the drop capable of sustaining Marangoni flows throughout the evaporation. Surface wettability was found to also play a role in both the emergence of the Marangoni flows and the evaporation kinetics. In particular, recirculatory flows on hydrophobic surfaces were stronger when compared to hydrophilic for both uniform and local heating. To quantify the effect of heating mode and the importance of Marangoni flows, we calculated the evaporative flux for each case and found to it to be much higher in the localized heating case. Evaporative flux depends on both diffusion and natural convection of the vapor phase to the ambient. Hence, we estimated the Grashof number for each case and found a strong relation between natural convection in the vapor phase and heating regime or Marangoni convection in the liquid phase. Subsequently, we demonstrate the limitation of previously reported diffusion-only} model in describing the evaporation of heated drops

    Electrical Power Estimation of Thermoelectric Cement Composites with Inclusion of Nanostructured Materials

    No full text

    Thermoelectric Properties of Graphene and Carbon Nanotube

    No full text

    Experimental Investigation of Freezing and Melting Characteristics of Graphene-Based Phase Change Nanocomposite for Cold Thermal Energy Storage Applications

    No full text
    In the present work, the freezing and melting characteristics of water seeded with chemically functionalized graphene nanoplatelets in a vertical cylindrical capsule were experimentally studied. The volume percentage of functionalized graphene nanoplatelets varied from 0.1% to 0.5% with an interval of 0.1%. The stability of the synthesized samples was measured using zeta potential analyzer. The thermal conductivity of the nanocomposite samples was experimentally measured using the transient hot wire method. A ~24% (maximum) increase in the thermal conductivity was observed for the 0.5% volume percentage in the liquid state, while a ~53% enhancement was observed in the solid state. The freezing and melting behavior of water dispersed with graphene nanoplatelets was assessed using a cylindrical stainless steel capsule in a constant temperature bath. The bath temperatures considered for studying the freezing characteristics were −6 °C and −10 °C, while to study the melting characteristics the bath temperature was set as 31 °C and 36 °C. The freezing and melting time decreased for all the test conditions when the volume percentage of GnP increased. The freezing rate was enhanced by ~43% and ~32% for the bath temperatures of −6 °C and −10 °C, respectively, at 0.5 vol % of graphene loading. The melting rate was enhanced by ~42% and ~63% for the bath temperatures of 31 °C and 36 °C, respectively, at 0.5 vol % of graphene loading

    Solidification of Graphene-Assisted Phase Change Nanocomposites inside a Sphere for Cold Storage Applications

    No full text
    In this work, we experimentally investigated the solidification behavior of functionalized graphene-based phase change nanocomposites inside a sphere. The influence of graphene nanoplatelets on thermal transport and rheological characteristics of the such nanocomposites were also discussed. We adopted the covalent functionalization method to prepare highly stable phase change nanocomposites using commercially available phase change material (PCM) OM08 as the host matrix and graphene nanoplatelets (GnPs) with 0.1, 0.3, and 0.5 volume percentage as the nano inclusions. We report a maximum thermal conductivity enhancement of ~102 and ~46% with 0.5 vol% in the solid and liquid states, respectively. Rheological measurements show that the pure PCM shows Newtonian behavior, whereas the inclusion of GnPs leads to the transition to non-Newtonian behavior, especially at lower shear rates. Viscosity of the nanocomposite increases with an increase in the volume fraction of GnP. For 0.5 vol% of GnPs, maximum increase in viscosity was found to be ~37% at a shear rate of 1000 s−1. Time required for complete solidification decreases with the loading of GnPs. Maximum reduction in solidification time with 0.5 vol% of GnPs was ~40% for bath temperature of −10°C
    corecore