5 research outputs found

    Evidence of co-infection of chikungunya and densonucleosis viruses in C6/36 cell lines and laboratory infected Aedes aegypti (L.) mosquitoes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Densonucleosis viruses are the etiological agents of insect's disease. We have reported the isolation of densovirus from India and its distribution among the natural populations of <it>Aedes aegypti </it>mosquitoes across the country. Since densonucleosis virus persistently infects mosquito populations, and is demonstrated to negatively affect multiplication of dengue virus in <it>Aedes albopictus</it>, it would be interesting to study if this virus has a role in determining the susceptibility of the vector mosquito <it>Ae. aegypti </it>to chikugunya virus.</p> <p>Methods</p> <p>Mosquito cell lines and adult <it>Ae. aegypti </it>mosquitoes infected with densovirus were superinfected with Chikungunya virus and both the viruses were quantitated by determining their genomic copy number by real time amplification. Comparison was made between the log of genomic copy numbers of the viruses in the presence and absence of each other.</p> <p>Results</p> <p>The log of copy number of the viruses did not vary due to co-infection. Even though the RNA copy number of chikungunya virus increased over the period of time, no change was observed in the RNA copy number between the control and the co-infected group on any given day. Similarly, DNA copy number of densovirus also remained unchanged between the control and the co-infected groups.</p> <p>Conclusion</p> <p>Chikungunya virus neither stimulates the replication of densovirus nor is its own replication suppressed due to co-infection. <it>Ae. aegypti </it>mosquitoes with densovirus infection were as susceptible to infection by chikungunya virus as the uninfected mosquitoes.</p

    Computational investigations into structure and function impact of novel mutations identified in targeted exons from ovarian cancer cell lines

    No full text
    The lack of sensitive and specific biomarkers for ovarian cancer leads to late stage diagnosis of the disease in a majority of the cases. Mutation accumulation is the basis for cancer progression, thus identifying mutations is an important step in the disease diagnosis. In the present study, a comprehensive analysis of fifteen Next Generation Sequencing samples from thirteen ovarian cancer cell lines was carried out for the identification of new mutations. The study revealed eight clinically significant novel mutations in six ovarian cancer oncogenes, viz. SMARCA4, ARID1A, PPP2R1A, CTNNB1, DICER1 and PIK3CA. In-depth computational analysis revealed that the mutations affected the structure of the proteins in terms of stability, solvent accessible surface area and molecular dynamics. Moreover, the mutations were present in functionally significant domains of the proteins, thereby adversely affecting the protein functionality. PPI network for SMARCA4, CTNNB1, DICER1, PIK3CA, PPP2R1A and ARID1A showed that these genes were involved in certain significant pathways affecting various hallmarks of cancer. For further validation, in vitro studies were performed that revealed hypermutability of the CTNNB1 gene. Through this study we have identified some key mutations and have analysed their structural and functional impact. The study establishes some key mutations, which can be potentially explored as biomarker and drug target. Communicated by Ramaswamy H. Sarma</p

    Buffalopox outbreak in humans and animals in Western Maharashtra, India

    No full text
    An outbreak of febrile illness with rash was reported in humans and buffaloes with pox lesions in some villages of Solapur and Kolhapur districts of Maharashtra state, India. Detailed clinico-epidemiological investigations were done with collection of blood, vesicular fluid and scab from humans and animals. A total of 166 suspected human cases from Kasegaon village in Solapur district and 185 cases were reported from 21 different villages from Kolhapur district. The attack rate in humans in Kasegaon village was 6.6% while in Kolhapur district the attack rate for buffaloes was 11.7%. Pox-like lesions were associated with fever, malaise, pain at site of lesion and axillary and inguinal lymphadenopathy in the humans. Infected buffaloes had lesions on teats, udders, external ears and eyelids. Laboratory investigations included detection of Buffalopox virus (BPXV) by electron microscopy (EM), virus isolation and polymerase chain reaction (PCR). Presence of BPXV was confirmed in 7 human cases and one buffalo in Kasegaon and 14 human cases from Kolhapur. The virus was isolated from 3 clinical specimens and Orthopoxvirus (OPXV) particles could be observed in EM. Thus, BPXV was identified as the etiological agent of the outbreak among both humans and buffaloes. Phylogenetic analysis based on the ATI and C18L gene revealed that a single strain of virus is circulating in India. Re-emergence of OPXV like BPXV is a real danger and contingency planning is needed to define prophylactic and therapeutic strategies to prevent or stop an epidemic. Considering the productivity losses caused by buffalopox infection and its zoonotic impact, the importance of control measures in reducing the economic and public health impact cannot be underestimated

    Conservation of wild animals by assisted reproduction and molecular marker technology

    No full text
    710-723<span style="font-size:14.0pt;line-height: 115%;font-family:" times="" new="" roman";mso-fareast-font-family:"times="" roman";="" mso-ansi-language:en-in;mso-fareast-language:en-in;mso-bidi-language:hi"="" lang="EN-IN">Wild animals are an integral component of the ecosystem. Their decimation due to abrupt natural calamities or due to gradual human intervention would be disastrous to the ecosystem and would alter the balance in nature between various biotic components. Such an imbalance could have an adverse effect on the ecosystem. Therefore, there is an urgent need to put an end to the ever increasing list of endangered species by undertaking both in situ and ex situ conservation using tools of modern biology, to ascertain the degree of genetic variation and reproductive competence in these animals. This review highlights the development and use of molecular markers such as microsatellites, minisatellites, mitochondrial control region, cytochrome b and MHC loci to assess the genetic variation in various Indian wild animals such as the lion, tiger, leopard and deer. The review also presents data on the semen profile of the big cats of India. Reproductive technologies such as cryopreservation of semen and artificial insemination in big cats are also highlighted.</span
    corecore