131 research outputs found

    The environment of AGN dwarf galaxies at z\sim0.7 from the VIPERS survey

    Full text link
    Dwarf galaxies are ideal laboratories to study the relationship between the environment and AGN activity. However, the type of environments in which dwarf galaxies hosting AGN reside is still unclear and limited to low-redshift studies (z < 0.5). We use the VIMOS Public Extragalactic Redshift Survey (VIPERS) to investigate, for the first time, their environments at 0.5 < z < 0.9. We select a sample of 12,942 low-mass (log(M/M)10\rm{log}(M_\mathrm{*}/M_{\odot})\leq10) galaxies and use the emission-line diagnostic diagram to identify AGN. We characterise their local environments as the galaxy density contrast, δ\delta, derived from the fifth nearest neighbour method. Our work demonstrates that AGN and non-AGN dwarf galaxies reside in similar environments at intermediate redshift suggesting that the environment is not an important factor in triggering AGN activity already since z = 0.9. Dwarf galaxies show a strong preference for low-density environments, independently of whether they host an AGN or not. Their properties do not change when moving to denser environments, suggesting that dwarf galaxies are not gas-enriched due to environmental effects. Moreover, AGN presence does not alter host properties supporting the scenario that AGN feedback does not impact the star formation of the host. Lastly, AGN are found to host over-massive black holes. This is the first study of dwarf galaxies hosting AGN at z > 0.5. The next generation of deep surveys will reveal whether or not such lack of environmental trends is common also for faint higher-redshift dwarf galaxy populations.Comment: Accepted for publication in MNRAS, 19 pages, 14 figure

    Deep Extragalactic VIsible Legacy Survey: Data Release 1 blended spectra search for candidate strong gravitational lenses

    Get PDF
    Here, we present a catalogue of blended spectra in Data Release 1 of the Deep Extragalactic VIsible Legacy Survey (DEVILS) on the Anglo-Australian Telescope. Of the 23 197 spectra, 181 showed signs of a blend of redshifts and spectral templates. We examine these blends in detail for signs of either a candidate strong lensing galaxy or a useful overlapping galaxy pair. One of the three DEVILS target fields, COSMOS (D10), is close to complete and it is fully imaged with Hubble Space Telescope Advanced Camera for Surveys, and we visually examine the 57 blended spectra in this field in the F814W postage stamps. Nine are classical strong lensing candidates with an elliptical as the lens, out to higher redshifts than any previous search with spectroscopic surveys such as Sloan Digital Sky Survey (SDSS) or Galaxy And Mass Assembly. The gravitational lens candidate success rate is similar to earlier such searches (0.1 per cent). Strong gravitational lenses identified with blended spectroscopy have typically shown a high success rate (\u3e70 per cent), which make these interesting targets for future higher resolution lensing studies, monitoring for supernova cosmography, or searches for magnified atomic hydrogen signal

    Deep Extragalactic VIsible Legacy Survey: Data Release 1 blended spectra search for candidate strong gravitational lenses

    Get PDF
    Here, we present a catalogue of blended spectra in Data Release 1 of the Deep Extragalactic VIsible Legacy Survey (DEVILS) on the Anglo-Australian Telescope. Of the 23 197 spectra, 181 showed signs of a blend of redshifts and spectral templates. We examine these blends in detail for signs of either a candidate strong lensing galaxy or a useful overlapping galaxy pair. One of the three DEVILS target fields, COSMOS (D10), is close to complete and it is fully imaged with Hubble Space Telescope Advanced Camera for Surveys, and we visually examine the 57 blended spectra in this field in the F814W postage stamps. Nine are classical strong lensing candidates with an elliptical as the lens, out to higher redshifts than any previous search with spectroscopic surveys such as Sloan Digital Sky Survey (SDSS) or Galaxy And Mass Assembly. The gravitational lens candidate success rate is similar to earlier such searches (0.1 per cent). Strong gravitational lenses identified with blended spectroscopy have typically shown a high success rate (\u3e70 per cent), which make these interesting targets for future higher resolution lensing studies, monitoring for supernova cosmography, or searches for magnified atomic hydrogen signal

    Unsupervised classification reveals new evolutionary pathways

    Full text link
    While we already seem to have a general scenario of the evolution of different types of galaxies, a complete and satisfactory understanding of the processes that led to the formation of all the variety of today's galaxy types is still beyond our reach. To solve this problem, we need both large datasets reaching high redshifts and novel methodologies for dealing with them. The VIPERS survey statistical power, which observed 90,000\sim90,000 galaxies at z>0.5z > 0.5, and the application of an unsupervised clustering algorithm allowed us to distinguish 12 galaxy classes. Studies of their environmental dependence indicate that this classification may actually reflect different galaxy evolutionary paths. For instance, a class of the most passive red galaxies gathers galaxies 20%\sim20\% smaller than other red galaxies of a similar stellar mass, revealing the first sample of red nuggets at intermediate redshift. On the other end, a class of blue dwarf galaxies is composed mainly of AGN, challenging commonly used mid-infrared AGN selections.Comment: Accepted for publication in the ML4ASTRO (ICML 2022) proceeding boo

    DEVILS: cosmic evolution of SED-derived metallicities and their connection to star formation histories

    Get PDF
    Gas-phase metallicities of galaxies are typically measured through auroral or nebular emission lines, but metallicity also leaves an imprint on the overall spectral energy distribution (SED) of a galaxy and can be estimated through SED fitting. We use the PROSPECT SED fitting code with a flexible parametric star formation history and an evolving metallicity history to self-consistently measure metallicities, stellar mass, and other galaxy properties for 90 000 galaxies from the Deep Extragalactic VIsible Legacy Survey (DEVILS) and Galaxy and Mass Assembly (GAMA) survey. We use these to trace the evolution of the mass–metallicity relation (MZR) and show that the MZR only evolves in normalization by 0.1 dex at stellar mass M = 1010.5 M. We find no difference in the MZR between galaxies with and without SED evidence of active galactic nuclei emission at low redshifts (z \u3c 0.3). Our results suggest an anticorrelation between metallicity and star formation activity at fixed stellar mass for galaxies with M \u3e 1010.5 M for z \u3c 0.3. Using the star formation histories extracted using PROSPECT we explore higher order correlations of the MZR with properties of the star formation history including age, width, and shape. We find that at a given stellar mass, galaxies with higher metallicities formed most of their mass over shorter time-scales, and before their peak star formation rate. This work highlights the value of exploring the connection of a galaxy’s current gas-phase metallicity to its star formation history in order to understand the physical processes shaping the MZR

    Deep extragalactic visible legacy survey (DEVILS): the emergence of bulges and decline of disc growth since z = 1

    Get PDF
    We present a complete structural analysis of the ellipticals (E), diffuse bulges (dB), compact bulges (cB), and discs (D) within a redshift range 0 \u3c z \u3c 1, and stellar mass log10(M*/M⊙) ≥ 9.5 volume-limited sample drawn from the combined DEVILS and HST-COSMOS region. We use the PROFIT code to profile over ∼35 000 galaxies for which visual classification into single or double component was pre-defined in Paper-I. Over this redshift range, we see a growth in the total stellar mass density (SMD) of a factor of 1.5. At all epochs we find that the dominant structure, contributing to the total SMD, is the disc, and holds a fairly constant share of ∼60 per cent role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3e∼60 per cent∼60 per cent of the total SMD from z = 0.8 to z = 0.2, dropping to ∼30 per cent role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3e∼30 per cent∼30 per cent at z = 0.0 (representing ∼33 per cent role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3e∼33 per cent∼33 per cent decline in the total disc SMD). Other classes (E, dB, and cB) show steady growth in their numbers and integrated stellar mass densities. By number, the most dramatic change across the full mass range is in the growth of diffuse bulges. In terms of total SMD, the biggest gain is an increase in massive elliptical systems, rising from 20 per cent at z = 0.8 to equal that of discs at z = 0.0 (30 per cent) representing an absolute mass growth of a factor of 2.5. Overall, we see a clear picture of the emergence and growth of all three classes of spheroids over the past 8 Gyr, and infer that in the later half of the Universe’s timeline spheroid-forming processes and pathways (secular evolution, mass-accretion, and mergers) appear to dominate mass transformation over quiescent disc growth

    Deep Extragalactic VIsible Legacy Survey (DEVILS): SED fitting in the D10-COSMOS field and the evolution of the stellar mass function and SFR–M⋆ relation

    Get PDF
    We present catalogues of stellar masses, star formation rates (SFRs), and ancillary stellar population parameters for galaxies spanning 0 \u3c z \u3c 9 from the Deep Extragalactic VIsible Legacy Survey (DEVILS). DEVILS is a deep spectroscopic redshift survey with very high completeness, covering several premier deep fields including COSMOS (D10). Our stellar mass and SFR estimates are self-consistently derived using the spectral energy distribution (SED) modelling code PROSPECT, using well-motivated parametrizations for dust attenuation, star formation histories, and metallicity evolution. We show how these improvements, and especially our physically motivated assumptions about metallicity evolution, have an appreciable systematic effect on the inferred stellar masses, at the level of ∼0.2 dex. To illustrate the scientific value of these data, we map the evolving galaxy stellar mass function (SMF) and the SFR–M⋆ relation for 0 \u3c z \u3c 4.25. In agreement with past studies, we find that most of the evolution in the SMF is driven by the characteristic density parameter, with little evolution in the characteristic mass and low-mass slopes. Where the SFR–M⋆ relation is indistinguishable from a power law at z \u3e 2.6, we see evidence of a bend in the relation at low redshifts (z \u3c 0.45). This suggests evolution in both the normalization and shape of the SFR–M⋆ relation since cosmic noon. It is significant that we only clearly see this bend when combining our new DEVILS measurements with consistently derived values for lower redshift galaxies from the Galaxy And Mass Assembly (GAMA) survey: this shows the power of having consistent treatment for galaxies at all redshifts

    Deep Extragalactic VIsible Legacy Survey (DEVILS): SED Fitting in the D10-COSMOS Field and the Evolution of the Stellar Mass Function and SFR-MM_\star relation

    Get PDF
    We present catalogues of stellar masses, star formation rates, and ancillary stellar population parameters for galaxies spanning 0<z<90<z<9 from the Deep Extragalactic VIsible Legacy Survey (DEVILS). DEVILS is a deep spectroscopic redshift survey with very high completeness, covering several premier deep fields including COSMOS (D10). Our stellar mass and star formation rate estimates are self-consistently derived using the spectral energy distribution (SED) modeling code ProSpect, using well-motivated parameterisations for dust attenuation, star formation histories, and metallicity evolution. We show how these improvements, and especially our physically motivated assumptions about metallicity evolution, have an appreciable systematic effect on the inferred stellar masses, at the level of \sim0.2 dex. To illustrate the scientific value of these data, we map the evolving galaxy stellar mass function (SMF) for 0<z<50<z<5 and the SFR-MM_\star relation for 0<z<90<z<9. In agreement with past studies, we find that most of the evolution in the SMF is driven by the characteristic density parameter, with little evolution in the characteristic mass and low-mass slopes. Where the SFR-MM_\star relation is indistinguishable from a power-law at z>2.6z>2.6, we see evidence of a bend in the relation at low redshifts (z<0.45z<0.45). This suggests evolution in both the normalisation and shape of the SFR-MM_\star relation since cosmic noon. It is significant that we only clearly see this bend when combining our new DEVILS measurements with consistently derived values for lower redshift galaxies from the Galaxy And Mass Assembly (GAMA) survey: this shows the power of having consistent treatment for galaxies at all redshifts.Comment: Submitted for publication in MNRA

    Parallax in “Pi of the Sky” project

    Get PDF
    The main goal of the “Pi of the Sky” project is search for optical transients (OTs) of astrophysical origin, in particular those related to gamma-ray bursts (GRBs). Since March 2011 the project has two running observatories: one in northern Chile and the other one insouthern Spain. This allows for regular observations of a common sky fields, visible from both observatories which are scheduled usually 1–2 h per night. In such a case, the on-line flash recognition algorithm, looking for optical transients, can use parallax information toassure that events observed from both sites have parallax angle smaller than the error of astrometry. On the other hand, the remaining OT candidates can be verified against a hypothesis of being near-Earth objects. This paper presents algorithm using parallax information for identification of near-Earth objects, which might be satellites, or space debris elements. Preliminary results of the algorithm are also presented
    corecore