271 research outputs found

    Improvements on “Secure multi-party quantum summation based on quantum Fourier transform”

    Get PDF
    Recently, a quantum multi-party summation protocol based on the quantum Fourier transform has been proposed (Yang et al. in Quantum Inf Process 17:129, 2018). The protocol claims to be secure against both outside and participant attacks. However, a closer look reveals that the player in charge of generating the required multi-partite entangled states can launch two kinds of attacks to learn about other parties’ private integer strings without being caught. In this paper, we present these attacks and propose countermeasures to make the protocol secure again. The improved protocol not only can resist these attacks but also remove the need for the quantum Fourier transform and encoding quantum operations by participants

    Energy Systems Test Area (ESTA). Power Systems Test Facilities

    Get PDF
    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources

    Exit humidity of wet scrubbers for underground coal mines

    Full text link
    A wet scrubber is a device used in underground coal mines for the exhaust treatment system of various internal combustion engines (generally diesel) primarily as a spark arrestor with a secondary function to remove pollutants from the exhaust gas. A pool of scrubbing liquid (generally water based) is used in conjunction with a Diesel Particulate Filter (DPF). Scrubbers are widely used in underground applications of diesel engines as their exhaust contains high concentration of harmful diesel particulate matter (DPM) and other pollutant gases. Currently the DPFs have to be replaced frequently because moisture output from the wet scrubber blocks the filter media and causes reduced capacity. This paper presents experimental and theoretical studies on the heat and mass transfer mechanisms of the exhaust flow both under and above the water surface, aiming at finding the cause and effects of the moisture reaching the filters and employing a solution to reduce the humidity and DPM output, and to prolong the change-out period of the DPF. By assuming a steady flow condition, heat transfer from the inlet exhaust gas balances energy required for the water evaporation. Hence the exit humidity will decrease with the increase of exit temperature. Experiments on a real scrubber are underway

    Secure NN-dimensional Simultaneous Dense Coding and Applications

    Full text link
    Simultaneous dense coding guarantees that Bob and Charlie simultaneously receive their respective information from Alice in their respective processes of dense coding. The idea is to use the so-called locking operation to "lock" the entanglement channels, thus requiring a joint unlocking operation by Bob and Charlie in order to simultaneously obtain the information sent by Alice. We present some new results on simultaneous dense coding: (1) We propose three simultaneous dense coding protocols, which use different NN-dimensional entanglement (Bell state, W state and GHZ state). (2) Besides the quantum Fourier transform, two new locking operators are introduced (the double controlled-NOT operator and the SWAP operator). (3) In the case that spatially distant Bob and Charlie have to finalise the protocol by implementing the unlocking operation through communication, we improve our protocol's fairness, with respect to Bob and Charlie, by implementing the unlocking operation in series of steps. (4) We improve the security of simultaneous dense coding against the intercept-resend attack. (5) We show that simultaneous dense coding can be used to implement a fair contract signing protocol. (6) We also show that the NN-dimensional quantum Fourier transform can act as the locking operator in simultaneous teleportation of NN-level quantum systems.Comment: 22 pages, comments are welcom

    Sex Differences of Uncinate Fasciculus Structural Connectivity in Individuals with Conduct Disorder.

    Get PDF
    Conduct disorder (CD) is one of the most common behavior disorders in adolescents, such as impulsivity, aggression, and running from school. Males are more likely to develop CD than females, and two previous diffusion tensor imaging (DTI) studies have demonstrated abnormal microstructural integrity in the uncinate fasciculus (UF) in boys with CD compared to a healthy control group. However, little is known about changes in the UF in females with CD. In this study, the UF was illustrated by tractography; then, the fractional anisotropy (FA), axial diffusivity, mean diffusion, radial diffusivity (RD), and the length and number of the UF fiber bundles were compared between male and female patients with CD and between female patients with CD and female healthy controls, as well as between males with CD and healthy males. We found that males with CD showed significantly higher FA of the bilateral UF and significantly lower RD of the left UF when comparing with females with CD. Meanwhile, significantly higher FA and lower RD of the bilateral UF were also found in boys with CD relative to the male healthy controls. Our results replicated previous reports that the microstructural integrity of the UF was abnormal in boys with CD. Additionally, our results demonstrated significant gender effects on the UF of patients with CD, which may indicate why boys have higher rates of conduct problems than girls.published_or_final_versio

    Neutralisation of SARS-CoV-2 by monoclonal antibody through dual targeting powder formulation

    Get PDF
    Neutralising monoclonal antibody (mAb) is an important weapon in our arsenal for combating respiratory viral infections. However, the effectiveness of neutralising mAb has been impeded by the rapid emergence of mutant variants. Early administration of broad-spectrum mAb with improved delivery efficiency can potentially enhance efficacy and patient outcomes. WKS13 is a humanised mAb which was previously demonstrated to exhibit broad-spectrum activity against SARS-CoV-2 variants. In this study, a dual targeting formulation strategy was designed to deliver WKS13 to both the nasal cavity and lower airways, the two critical sites of infection caused by SARS-CoV-2. Dry powders of WKS13 were first prepared by spray drying, with cyclodextrin used as stabiliser excipient. Two-fluid nozzle (TFN) was used to produce particles below 5 ÎĽm for lung deposition (C-TFN formulation) and ultrasonic nozzle (USN) was used to produce particles above 10 ÎĽm for nasal deposition (C-USN formulation). Gel electrophoresis and size exclusion chromatography studies showed that the structural integrity of mAb was successfully preserved with no sign of aggregation after spray drying. To achieve dual targeting property, C-TFN and C-USN were mixed at various ratios. The aerosolisation property of the mixed formulations dispersed from a nasal powder device was examined using a Next Generation Impactor (NGI) coupled with a glass expansion chamber. When the ratio of C-TFN in the mixed formulation increased, the fraction of particles deposited in the lung increased proportionally while the fraction of particles deposited in the nasal cavity decreased correspondingly. A customisable aerosol deposition profile could therefore be achieved by manipulating the mixing ratio between C-TFN and C-USN. Dual administration of C-TFN and C-USN powders to the lung and nasal cavity of hamsters, respectively, was effective in offering prophylactic protection against SARS-CoV-2 Delta variant. Viral loads in both the lung tissues and nasal wash were significantly reduced, and the efficacy was comparable to systemic administration of unformulated WKS13. Overall, dual targeting powder formulation of neutralising mAb is a promising approach for prophylaxis of respiratory viral infections. The ease and non-invasive administration of dual targeting nasal powder may facilitate the widespread distribution of neutralising mAb during the early stage of unpredictable outbreaks

    Quantum fluids of light

    Full text link
    This article reviews recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems. In presence of effective photon-photon interactions induced by the optical nonlinearity of the medium, a many-photon system can behave collectively as a quantum fluid with a number of novel features stemming from its intrinsically non-equilibrium nature. We present a rich variety of photon hydrodynamical effects that have been recently observed, from the superfluid flow around a defect at low speeds, to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles. While our review is mostly focused on a class of semiconductor systems that have been extensively studied in recent years (namely planar semiconductor microcavities in the strong light-matter coupling regime having cavity polaritons as elementary excitations), the very concept of quantum fluids of light applies to a broad spectrum of systems, ranging from bulk nonlinear crystals, to atomic clouds embedded in optical fibers and cavities, to photonic crystal cavities, to superconducting quantum circuits based on Josephson junctions. The conclusive part of our article is devoted to a review of the exciting perspectives to achieve strongly correlated photon gases. In particular, we present different mechanisms to obtain efficient photon blockade, we discuss the novel quantum phases that are expected to appear in arrays of strongly nonlinear cavities, and we point out the rich phenomenology offered by the implementation of artificial gauge fields for photons.Comment: Accepted for publication on Rev. Mod. Phys. (in press, 2012

    Radiotherapy following breast-conserving surgery for screen-detected ductal carcinoma in situ: indications and utilisation in the UK. Interim findings from the Sloane Project

    Get PDF
    Use of radiotherapy (RT) after breast-conserving surgery (BCS) for ductal carcinoma in situ (DCIS) varies according to country, precedent and prejudice. Results from a preliminary analysis of the data available within the UK Sloane Project can be appreciated in the context of the uncertainty concerning the selection of adjuvant RT following BCS for DCIS. There was a marked geographical variation in the use of RT within the United Kingdom. However, overall, patients with DCIS treated with BCS were significantly more likely to have RT planned (and given) if they had large (⩾15 mm), intermediate or high-grade tumours or if central comedo-type necrosis was present. Unexpectedly, margin width did not appear to have a significant effect on the decision-making process. However, the Van Nuys Prognostic Index did significantly affect the chances of getting planned RT in the univariate analysis, suggesting that clinicians may be starting to use this scoring system in routine practice to assist in decision making
    • …
    corecore