605 research outputs found
Effect of Shi-Zhen-An-Shen herbal formula granule in the treatment of young people at ultra-high risk for psychosis: a pilot study
IntroductionTo date, there is no conclusive evidence for early interventions on ultra-high risk (UHR) for psychosis. The Chinese herbal medicine is confirmed to be beneficial in improving psychiatric symptoms and cognitive impairments for schizophrenia patients. However, the effect of Chinese herbal medicine on treating UHR patients remains unknown.MethodsEighty UHR patients were recruited from the outpatient department. They were randomly assigned to receive either Shi-Zhen-An-Shen herbal formula granule (SZAS-HFG) combined with aripiprazole placebo or aripiprazole combined with SZAS-HFG placebo for a 12-week treatment. The psychiatric symptoms were assessed using the Structured Interview for Prodromal Syndromes (SIPS). The Trail Making Test part A (TMT-A), Brief Visuospatial Memory Test (BVMT), Hopkins Verbal Learning Test (HVLT), and Continuous Performance Test (CPT) were used to assess cognitive functions. we also employed the Global Assessment of Functioning (GAF) to evaluate social functioning. The linear mixed-effects models were performed to detect the difference in effectiveness between the two groups.ResultsAfter 12-week treatment, both groups showed significant effects of time on SIPS, TMT-A, HVLT, BVMT, and GAF. There was a significant effect of group only on CPT. Moreover, we also found a significant interaction effect on GAF.ConclusionSZAS-HFG can effectively alleviate psychosis symptoms, and improve cognitive impairments and overall functioning as well as aripiprazole.Clinical trial registration: Chinese Clinical Trial Registry, ChiCTR-IOR-17013513
The altered intrinsic functional connectivity after acupuncture at shenmen (HT7) in acute sleep deprivation
IntroductionAccumulating evidence has shown that acupuncture could significantly improve the sleep quality and cognitive function of individuals suffering from insufficient sleep. Numerous animal studies have confirmed the effects and mechanisms of acupuncture on acute sleep deprivation (SD). However, the role of acupuncture on individuals after acute SD remains unclear.MethodsIn the current study, we recruited 30 healthy subjects with regular sleep. All subjects received resting-state fMRI scans during the rested wakefulness (RW) state and after 24 h of total SD. The scan after 24 h of total SD included two resting-state fMRI sessions before and after needling at Shenmen (HT7). Both edge-based and large-scale network FCs were calculated.ResultsThe edge-based results showed the suprathreshold edges with abnormal between-network FC involving all paired networks except somatosensory motor network (SMN)-SCN between the SD and RW state, while both decreased and increased between-network FC of edges involving all paired networks except frontoparietal network (FPN)-subcortical network (SCN) between before and after acupuncture at HT7. Compared with the RW state, the large-scale brain network results showed decreased between-network FC in SMN-Default Mode Network (DMN), SMN-FPN, and SMN-ventral attention network (VAN), and increased between-network FC in Dorsal Attention Network (DAN)-VAN, DAN-SMN between the RW state and after 24 h of total SD. After acupuncture at HT7, the large-scale brain network results showed decreased between-network FC in DAN-VAN and increased between-network FC in SMN-VAN.ConclusionAcupuncture could widely modulate extensive brain networks and reverse the specific between-network FC. The altered FC after acupuncture at HT7 may provide new evidence to interpret neuroimaging mechanisms of the acupuncture effect on acute SD
A Thymidine Kinase recombinant protein-based ELISA for detecting antibodies to Duck Plague Virus
<p>Abstract</p> <p>Background</p> <p>Duck plague virus (DPV) is the causative agent of Duck Plague (DP) that causes significant morbidity and mortality throughout duck-producing areas of the world. The diagnosis of DP currently relies on the use of live or inactivated whole DPV virion as antigens in ELISA, but it is too laborious and expensive for routine application, and it is still difficult to get purified DPV virion with current technology.</p> <p>Results</p> <p>In this study, we describe the expression and purification of a recombinant Thymidine Kinase (TK) protein which makes antigen in an in-house developed, optimized and standardized ELISA. The specificity of the optimized TK-ELISA was evaluated by antisera against Duck Plague Virus (DPV), Duck Hepatitis B Virus (DHBV), Duck Hepatitis Virus (DHV), <it>Riemerella Anatipestifer</it>(<it>R. A</it>), <it>Escherichia coli </it>(<it>E. coli</it>) and <it>Salmonella anatum </it>(<it>S. anatum</it>). Only antisera against DPV yielded a specific and strong signal. In order to determine the sensitivity of the TK-ELISA, a panel of diluted sera was tested, and the minimum detection limit of 1:2560 (OD450 nm = 0.401) was obtained according to the endpoint cut-off (0.2438). The repeatability and reproducibility under the experimental conditions demonstrates a low variability (P > 0.05). The suspected sera samples (n = 30) were determined by TK-ELISA and the positive rate is 90% (27/30), and the TK-ELISA showed 83.33% (22+3/30) coincidence rate with the Serum Neutralization Test (SNT) and 90% (24+3/30) coincidence rate with the whole DPV virion based-ELISA (DPV-ELISA). When defining the dynamics of antibody response to attenuated live DPV vaccine, the maximum antibodies is reached after 4 weeks.</p> <p>Conclusions</p> <p>The results suggest that the TK-ELISA provides high specificity, sensitivity, repeatability and reproducibility for detection of anti-DPV antibodies in duck sera, and has the potential to be much simpler than DPV-ELISA and SNT for the sera epidemiological investigation.</p
A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts
Terminally differentiated cells can be generated by lineage reprogramming, which is, however, hindered by incomplete conversion with residual initial cell identity and partial functionality. Here, we demonstrate a new reprogramming strategy by mimicking the natural regeneration route, which permits generating expandable hepatic progenitor cells and functionally competent human hepatocytes. Fibroblasts were first induced into human hepatic progenitor-like cells (hHPLCs), which could robustly expand in vitro and efficiently engraft in vivo. Moreover, hHPLCs could be efficiently induced into mature human hepatocytes (hiHeps) in vitro, whose molecular identity highly resembles primary human hepatocytes (PHHs). Most importantly, hiHeps could be generated in large quantity and were functionally competent to replace PHHs for drug-metabolism estimation, toxicity prediction and hepatitis B virus infection modeling. Our results highlight the advantages of the progenitor stage for successful lineage reprogramming. This strategy is promising for generating other mature human cell types by lineage reprogramming.</p
Leveraging 16S rRNA Microbiome Sequencing Data to Identify Bacterial Signatures for Irritable Bowel Syndrome
Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder characterized by abdominal pain or discomfort. Previous studies have illustrated that the gut microbiota might play a critical role in IBS, but the conclusions of these studies, based on various methods, were almost impossible to compare, and reproducible microorganism signatures were still in question. To cope with this problem, previously published 16S rRNA gene sequencing data from 439 fecal samples, including 253 IBS samples and 186 control samples, were collected and processed with a uniform bioinformatic pipeline. Although we found no significant differences in community structures between IBS and healthy controls at the amplicon sequence variants (ASV) level, machine learning (ML) approaches enabled us to discriminate IBS from healthy controls at genus level. Linear discriminant analysis effect size (LEfSe) analysis was subsequently used to seek out 97 biomarkers across all studies. Then, we quantified the standardized mean difference (SMDs) for all significant genera identified by LEfSe and ML approaches. Pooled results showed that the SMDs of nine genera had statistical significance, in which the abundance of Lachnoclostridium, Dorea, Erysipelatoclostridium, Prevotella 9, and Clostridium sensu stricto 1 in IBS were higher, while the dominant abundance genera of healthy controls were Ruminococcaceae UCG-005, Holdemanella, Coprococcus 2, and Eubacterium coprostanoligenes group. In summary, based on six published studies, this study identified nine new microbiome biomarkers of IBS, which might be a basis for understanding the key gut microbes associated with IBS, and could be used as potential targets for microbiome-based diagnostics and therapeutics
Injectable liposomal docosahexaenoic acid alleviates atherosclerosis progression and enhances plaque stability
Atherosclerosis is a chronic inflammatory vascular disease that is characterized by the accumulation of lipids and immune cells in plaques built up inside artery walls. Docosahexaenoic acid (DHA, 22:6n-3), an omega-3 polyunsaturated fatty acid (PUFA), which exerts anti-inflammatory and antioxidant properties, has long been purported to be of therapeutic benefit to atherosclerosis patients. However, large clinical trials have yielded inconsistent data, likely due to variations in the formulation, dosage, and bioavailability of DHA following oral intake. To fully exploit its potential therapeutic effects, we have developed an injectable liposomal DHA formulation intended for intravenous administration as a plaque-targeted nanomedicine. The liposomal formulation protects DHA against chemical degradation and increases its local concentration within atherosclerotic lesions. Mechanistically, DHA liposomes are readily phagocytosed by activated macrophages, exert potent anti-inflammatory and antioxidant effects, and inhibit foam cell formation. Upon intravenous administration, DHA liposomes accumulate preferentially in atherosclerotic lesional macrophages and promote polarization of macrophages towards an anti-inflammatory M2 phenotype, resulting in attenuation of atherosclerosis progression in both ApoE−/− and Ldlr−/− experimental models. Plaque composition analysis demonstrates that liposomal DHA inhibits macrophage infiltration, reduces lipid deposition, and increases collagen content, thus improving the stability of atherosclerotic plaques against rupture. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) further reveals that DHA liposomes can partly restore the complex lipid profile of the plaques to that of early-stage plaques. In conclusion, DHA liposomes offer a promising approach for applying DHA to stabilize atherosclerotic plaques and attenuate atherosclerosis progression, thereby preventing atherosclerosis-related cardiovascular events
An Experimental Study of Subliminal Self-Face Processing in Depersonalization–Derealization Disorder
The self-perception or self-experience of patients with depersonalization/derealization disorder (DPD) is altered, leading to a profound disruption in self-awareness. The main aim of the study is to explore the characteristics of subliminal self-face processing in DPD patients. To our knowledge, this is the first experimental study that has measured and evaluated subliminal self-processing in DPD. To better understand this, we examined the ability of patients with DPD and healthy controls (HC) to identify pictures of faces using an experimental paradigm of breaking continuous flash suppression. There were 23 DPD outpatients from Beijing Anding Hospital, Capital Medical University and 23 matched HC who participated in this experiment. The time needed for a face to break into awareness was taken as the measure of participants’ subliminal processing of that face. The results indicated that there were significant differences between the DPD patients and HC in subliminal reaction times to different faces. Under experimental conditions, the average reaction response of self-face recognition in the HC group was significantly faster than for a famous face. However, this difference was not observed in DPD patients, which means that DPD patients did not show the processing advantage of their own faces as did the HC. The results suggest a deficit in subliminal self-face processing in DPD
Transcriptome Analysis of the Preservation Effect of Three Essential Oil Microcapsules on Okra
Cinnamon (Cinnamomum sp.) essential oil microcapsules, oregano (Origanum sp.) essential oil microcapsules, and oregano–thyme (Thymus sp.) essential oil microcapsules are rarely used in the postharvest preservation treatment of okra (Abelmoschus esculentus L.). The mechanism of these three essential oil microcapsules on the postharvest preservation of okra is also not yet well understood. In this study, fresh okra was preserved by three kinds of essential oil microcapsules (cinnamon essential oil microcapsules, oregano essential oil microcapsules, and oregano–thyme essential oil microcapsules). The effect of essential oil microcapsules on the postharvest storage quality of okra was discussed. We also used RNA-Seq to preliminarily explore the mechanism of oregano–thyme essential oil microcapsules on the pre-harvest storage quality of okra. The results showed that the three kinds of essential oil microcapsules could maintain the high sensory evaluation quality and firmness of okra, slow down the increase in respiratory intensity, slow down the total number of colonies on the fruit surface, and slow down weight loss. Through analysis, it was found that the effect of oregano–thyme essential oil microcapsules was remarkably better than that of cinnamon essential oil microcapsules and oregano essential oil microcapsules. The preservation mechanism of oregano–thyme essential oil microcapsules on postharvest okra was preliminarily elucidated by RNA-Seq. This study provides a certain basis for a follow-up study of essential oil microcapsules in the preservation of okra
High-Value and Environmentally Friendly Recycling Method for Coal-Based Solid Waste Based on Polyurethane Composite Materials
This study aims to provide a high-value and environmentally friendly method for the application of coal-based solid waste. Modified fly ash/polyurethane (MFA/PU) and modified coal gangue powder/polyurethane (MCG/PU) composites were prepared by adding different contents of MFA and MCG (10%, 20%, 30%, 40%). At the filler content of 30%, the compressive strengths of MFA/PU and MCG/PU are 84.1 MPa and 46.3 MPa, respectively, likely due to an improvement in interface compatibility, as indicated by scanning electron microscopy (SEM). The MFA/PU and MCG/PU composites present their highest limiting oxygen index (LOI) values of 29% and 23.5%, respectively, when their filler content is 30%. MFA has advantages in improving the LOIs of composites. Cone calorimetry (CCT) and SEM demonstrate that the two composites exhibit similar condensed-phase flame-retardant behaviors during combustion, which releases CO2 in advance and accelerates the formation of a dense barrier layer. Compared with the MFA/PU composites, the MCG/PU composites could produce a more stable and dense barrier structure. Water quality tests show that heavy metals do not leak from FA and CG embedded in PU. This work provided a new strategy for the safe and high-value recycling of coal-based solid waste
- …