15 research outputs found

    Chlorido(1-cyclo­pentyl­idene-4-ethyl­thio­semicarbazidato-κ2 N 1,S)diphenyl­tin(IV)

    Get PDF
    The Sn atom in the title compound, [Sn(C6H5)2(C8H14N3S)Cl], is penta­coordinated with a trigonal-bipyramidal coordination geometry. The 1-cyclo­pentyl­idene-4-ethyl­thio­semicarbazidate (cpetsc) ligand coordinates through the S atom and the N atom bonds to the cyclo­pentyl group, forming a five-membered ring with the Sn center. The chloride ligand and the coordinated N atom are in axial positions. In the crystal structure, inter­molecular N—H⋯Cl hydrogen bonds form chains along [101]

    Metabonomic analysis of HIV-infected biofluids

    Get PDF
    Monitoring the progression of HIV infection to full-blown acquired immune deficiency syndrome (AIDS) and assessing responses to treatment will benefit greatly from the identification of novel biological markers especially since existing clinical indicators of disease are not infallible. Nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are powerful methodologies used in metabonomic analyses for an approximation of HIV-induced changes to the phenotype of an infected individual. Although early in its application to HIV/AIDS, (biofluid) metabonomics has already identified metabolic pathways influenced by both HIV and/or its treatment. To date, biofluid NMR and MS data show that the virus and highly active antiretroviral treatment (HAART) mainly influence carbohydrate and lipid metabolism, suggesting that infected individuals are susceptible to very specific metabolic complications. A number of well-defined biofluid metabonomic studies clearly distinguished HIV negative, positive and treatment experienced patient profiles from one another. While many of the virus or treatment affected metabolites have been identified, the metabonomics measurements were mostly qualitative. The identities of the molecules were not always validated neither were the statistical models used to distinguish between groups. Assigning particular metabolic changes to specific drug regimens using metabonomics also remains to be done. Studies exist where identified metabolites have been linked to various disease states suggesting great potential for the use of metabonomics in disease prognostics. This review therefore examines the field of metabonomics in the context of HIV/AIDS, comments on metabolites routinely detected as being affected by the pathogen or treatment, explains what existing data suggest and makes recommendations on future research.This work was supported by grants from the Technology Innovation Agency (TIA) of South Africa.http://www.rsc.org/molecularbiosystemsam201

    Mid-ATR-FTIR spectroscopic profiling of HIV/AIDS sera for novel systems diagnostics in global health

    Get PDF
    Please read abstract in the article.The Technology Innovation Agency (TIA) and the University of Pretoria.http://www.liebertonline.com/loi/omiam201

    A combined chemometric and quantitative NMR analysis of HIV/AIDS serum discloses metabolic alterations associated with disease status

    Get PDF
    Individuals infected with the human immunodeficiency virus (HIV) often suffer from concomitant metabolic complications. Treatment with antiretroviral therapy has also been shown to alter the metabolism of patients. Although chemometric analysis of nuclear magnetic resonance (NMR) spectra of human sera can distinguish normal sera (HIVneg) from HIV-infected sera (HIVpos) and sera from HIV-infected patients on antiretroviral therapy (ART), quantitative analysis of the discriminating metabolites and their relationship to disease status has yet to be determined. The objectives of the study were to analyze NMR spectra of HIVneg, HIVpos, and ART serum samples with a combination of chemometric and quantitative methods and to compare the NMR data with disease status as measured by viral load and CD4 count. High-resolution magic angle spinning (HRMAS) NMR spectroscopy was performed on HIVneg (N = 10), HIVpos (N = 10), and ART (N = 10) serum samples. Chemometric linear discriminant analysis classified the three groups of spectra with 100% accuracy. Concentrations of 12 metabolites were determined with a semi-parametric metabolite quantification method named high-resolution quantum estimation (HR-QUEST). CD4 count was directly associated with alanine (p = 0.008), and inversely correlated with both glutamine (p = 0.017) and glucose (p = 0.022) concentrations. A multivariate linear model using alanine, glutamine and glucose as covariates demonstrated an association with CD4 count (p = 0.038). The combined chemometric and quantitative analysis of the data disclosed previously unknown associations between specific metabolites and disease status. The observed associations with CD4 count are consistent with metabolic disorders that are commonly seen in HIV-infected patients.http://www.rsc.org/molecularbiosystemsam201

    Rhodamine 6G hexachloridostannate(IV) acetonitrile disolvate

    Get PDF
    In the title compound, bis({6-ethylamino-10-[2-(methoxycarbonyl)phenyl]-2,7-dimethylxanthen-3-ylidene}ethanaminium) hexachloridotin(IV) acetonitrile disolvate, (C27H29N2O3)2[SnCl6]·2C2H3N, the octahedral SnCl62− anion lies on an inversion center. The xanthene ring system is essentially planar, with an average deviation of 0.020 Å, and the substituent benzene ring forms a dihedral angle of 85.89 (2)° with it. The Sn—Cl distances are in the range 2.4237 (3)–2.4454 (3) Å. There are N—H...Cl hydrogen bonds between SnCl62− ions and rhodamine 6G cations as well as π–π stacking interactions between rhodamine 6G cations (interplanar distance of 3.827 Å)

    Antimicrobial and Antioxidant Properties of a Bacterial Endophyte, Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum Seeds

    No full text
    This study reports on the isolation and identification of Methylobacterium radiotolerans MAMP 4754 from the seeds of the medicinal plant, Combretum erythrophyllum, for the purposes of investigating antimicrobial and antioxidant activities from this endophyte. The strain identity was confirmed by 16S rRNA-based phylogeny and Scanning Electron Microscopy (SEM). Ethyl acetate and chloroform (1 : 1 v/v) extracts from the endophyte were tested for antimicrobial and antioxidant activity on a total of 7 bacterial species (3 Gram-positive and 4 Gram-negative) using the standard Minimum Inhibitory Concentration (MIC) protocol and Quantitative Radical Scavenging activity using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay, respectively. The MICs were recorded at 250 μg/mL for B. subtilis ATCC 19659, B. cereus ATCC 1076, E. coli ATCC1053, and 62.5 μg/mL for K. oxytoca ATCC 13182 and M. smegmatis ATCC 21293, while an IC50 of 5.65 μg/mL was recorded with the DPPH assay. Qualitative phytochemical analysis was positive for alkaloids, flavonoids, and steroids. Gas chromatography/mass spectrometry (GC/MS) analysis revealed the presence of 9-octadecene, 2,4-dinitrophenyl acetate, and 2(5H)-furanone, which have been previously reported for the targeted activities. M. radiotolerans MAMP 4754 tested positive for antimicrobial and antioxidant activity and this is linked to the production of plant-derived secondary metabolites by this strain

    Untargeted Metabolomics Exploration of the Growth Stage-Dependent Chemical Space of the Sclareol-Converting Biocatalyst <i>Hyphozyma roseonigra</i>

    No full text
    Hyphozyma roseonigra is a dimorphic yeast used as a biocatalyst to convert sclareol, a plant diterpenoid to ambradiol. The latter is an intermediate in the synthesis of ambrafuran, a high-value chemical in the fragrance industry. Unfortunately, little is known about the underlying biochemistry of this microorganism. In this study, the integration of multi-platform-based metabolomics was used to better comprehend H. roseonigra from a biochemical perspective. The focus on metabolomic changes during growth and development was accomplished using untargeted LC–MS and NMR analyses. Cell suspensions were grown in batch culture over a 14-day period, and cells from the early-, log-, and stationary phases were harvested every second day using platform-compatible extraction procedures. Following chemometric analysis of LC–MS and NMR data acquired from both intra- and extracellular extracts, the identified discriminatory ions annotated from the endo- and exometabolomes (metabo-fingerprinting and metabo-footprinting) were found to fall predominantly in the primary metabolism class. Pathway mapping and feature-based network correlation analysis assisted in gaining insights into the active metabolic pathways during growth and development and did not flag terpene synthesis. This study provides novel insights into the basic metabolic capabilities of H. roseonigra and suggests that sclareol is metabolized as the detoxification of a hydrophobic xenobiotic compound

    Untargeted Metabolomics Exploration of the Growth Stage-Dependent Chemical Space of the Sclareol-Converting Biocatalyst Hyphozyma roseonigra

    No full text
    Hyphozyma roseonigra is a dimorphic yeast used as a biocatalyst to convert sclareol, a plant diterpenoid to ambradiol. The latter is an intermediate in the synthesis of ambrafuran, a high-value chemical in the fragrance industry. Unfortunately, little is known about the underlying biochemistry of this microorganism. In this study, the integration of multi-platform-based metabolomics was used to better comprehend H. roseonigra from a biochemical perspective. The focus on metabolomic changes during growth and development was accomplished using untargeted LC&ndash;MS and NMR analyses. Cell suspensions were grown in batch culture over a 14-day period, and cells from the early-, log-, and stationary phases were harvested every second day using platform-compatible extraction procedures. Following chemometric analysis of LC&ndash;MS and NMR data acquired from both intra- and extracellular extracts, the identified discriminatory ions annotated from the endo- and exometabolomes (metabo-fingerprinting and metabo-footprinting) were found to fall predominantly in the primary metabolism class. Pathway mapping and feature-based network correlation analysis assisted in gaining insights into the active metabolic pathways during growth and development and did not flag terpene synthesis. This study provides novel insights into the basic metabolic capabilities of H. roseonigra and suggests that sclareol is metabolized as the detoxification of a hydrophobic xenobiotic compound
    corecore