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Abstract

Global health, whether in developed or developing countries, is in need of robust systems diagnostics for major
diseases, such as HIV/AIDS, impacting the world populations. Fourier transform Infrared (FTIR) spectroscopy
of serum is a quick and reagent-free methodology with which to analyze metabolic alterations such as those
caused by disease or treatment. In this study, Attenuated Total Reflectance Fourier-Transform (ATR-FTIR)
Spectroscopy was investigated as a means of distinguishing HIV-infected treatment-experienced (HIVpos

ARTpos, n = 39) and HIV-infected-treatment-naı̈ve (HIVpos ARTneg, n = 16) subjects from uninfected control
subjects (n = 30). Multivariate pattern recognition techniques, including partial least squares discriminant analysis
(PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA), successfully distinguished
sample classes, while univariate approaches identified significant differences ( p < 0.05) after Benjamini-Hochberg
corrections. OPLS-DA discriminated between all groups with sensitivity, specificity, and accuracy of > 90%.
Compared to uninfected controls, HIVpos ARTpos and HIVpos ARTneg subjects displayed significant differences
in spectral regions linked to lipids/fatty acids (3010 cm - 1), carbohydrates (1299 cm - 1; 1498 cm - 1), glucose
(1035 cm - 1), and proteins (1600 cm - 1; 1652 cm - 1). These are all molecules shown by conventional bio-
chemical analysis to be affected by HIV/ART interference. The biofluid metabolomics approach applied here
successfully differentiated global metabolic profiles of HIV-infected patients and uninfected controls and
detected potential biomarkers for development into indicators of host response to treatment and/or disease
progression. Our findings therefore contribute to ongoing efforts for capacity-building in global health for
robust omics science and systems diagnostics towards major diseases impacting population health.

Introduction

In addition to immune system disruption, HIV infec-
tion is also known to cause metabolic abnormalities

ranging from dyslipidemia, hyperglycemia, insulin resis-
tance, and diabetes (Butt et al., 2004; Dube et al., 2003; Friis-
Moller et al., 2003; Koutkia and Grinspoon, 2003; Omech
et al., 2012). Antiretroviral therapy (ART) can normalize
CD4 + cell count leading to reduced morbidity and death in
HIV-infected individuals (Vrisekoop et al., 2008), but the
continued use of ART can lead to metabolic disorders ( John
et al., 2001; Koutkia and Grinspoon, 2003). HIV-1-infected
individuals, and especially those on treatment, must be
monitored constantly for the onset of metabolic complica-
tions in order to initiate interventions to delay and/or prevent
severe metabolic diseases such as type II diabetes and heart
disease (Butt et al., 2004; Friis-Moller et al., 2003).

The diagnosis and monitoring of metabolic abnormalities
resulting from HIV infection and/or ART is based mainly
on radioimmunoassays, dual-energy X-ray absorptiometry

(DEXA), and numerous other colorimetric assays (Chang
et al., 2004; Negredo et al., 2002; Taylor et al., 2007) where
one metabolite or a group of related metabolites are detected
at a time. These methods are not only laborious to perform
but also expensive and can be subjective (Wohl et al., 2006).
A possible solution to some of these issues is offered by
metabolomics methodologies where multiple metabolites can
be measured in a single analysis.

Several spectroscopic techniques have been employed to
obtain metabolic profiles that distinguish diseased from
healthy biofluids (Derenne et al., 2012; Edelstein, 2011;
Graça et al., 2013; Johnston et al., 2010; Serkova and
Niemann, 2006; Sitole et al., 2013). Previous studies from our
group described the potential of both nuclear magnetic res-
onance (NMR) spectroscopy (Hewer et al., 2006; Philippeos
et al., 2009) and mass spectrometry (MS) (Williams et al.,
2012) in HIV/AIDS metabolomics. Here we explore the use
of ATR-FTIR, a methodology incorporating a much simpler
data collection approach, for the detection of metabolites in
HIV-infected sera compared to negative controls with the
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secondary goal of determining whether metabolites detected
in this manner would be comparable to those identified by
NMR and MS-metabolomics and thus leading to the same
conclusions.

Vibrational spectroscopic methods such as FTIR- and
Raman spectroscopy are multipurpose techniques that offer
advantages in simplicity, rapidity, low-cost, and minimal
sample preparation. FTIR spectroscopy, in combination with
multivariate statistical analysis of data, was shown to be a
useful method of metabolic profiling of disease, since it ac-
curately reflected the phenotype of a sample (Ellis et al.,
2006). Very few studies have evaluated the potential of FTIR
technology for distinguishing spectra from HIV-infected
compared to uninfected individuals. Bahmani and co-work-
ers (2009) demonstrated that visible–near-infrared (Vis-NIR)
spectra, coupled with partial least square (PLS) regression
could detect HIV infection in plasma samples. In their study,
Bahmani et al. (2009) showed that plasma Vis-NIR spec-
troscopy combined with principal component analysis (PCA)
and soft independent modelling of class analogy (SIMCA)
allowed for a discrimination between samples from HIVpos

untreated patients and uninfected controls. This makes sense
because the effect of HIV on metabolism is dependent on
viral load, with higher levels being more detrimental to the
patient and the most extreme cases of metabolic interference
being seen in the presence of ART. Data presented by Bah-
mani et al. (2009) suggested that vibrational changes of the
functional groups in ArCH (857–890 nm), ROH (940–
970 nm), and RNH2 (1030 nm) were sufficient to discriminate
cases in the context of their HIV status. Since these functional
groups (ArCH, ROH, and RNH2) are found in proteins, lipids,
and saccharides, cautious inferences regarding metabolic ir-
regularities associated with these molecules can be made.

Given the preliminary successes with Vis-NIR spectra able
to discriminate HIV-infected compared to uninfected spectra,
this current investigation attempted to show an improved
discrimination between HIV infected (treated and untreated)
and uninfected sera using FTIR spectroscopy in the mid-IR
region (4000–400 cm - 1). Since the mid-IR region detects
vibrations of essential biomolecules, it is widely used in
studies of spectral differences of biological samples (as re-
viewed by Ellis et al., 2006).

The metabolic differences detected by ATR-FTIR spec-
troscopy between the experimental groups is presented here
for the first time. ATR-FTIR spectroscopy coupled with
chemometrics successfully distinguished sera from HIV-
infected patients and uninfected controls with distinctions
visible in the presence of treatment. This data allowed for
conclusions similar to those reached using data collected with
more sensitive metabolomics methodologies such as NMR
and MS.

Materials and Methods

Ethics approval

The ethics committee of the University of Pretoria (Facul-
ties of Natural and Agricultural Sciences and Health Sciences)
approved this study with protocol numbers E080-506-019 and
163/2008. All patient volunteers gave their consent for in-
volvement in the study, and patient anonymity was maintained
throughout. HIV-infected patients were randomly selected
from the King’s Hope Clinic in Diepsloot, west of Johannes-

burg, and from Eersterust Community Health Centre in Pre-
toria, South Africa. Clinical information on each participant
was obtained from both the medical records, and from a
questionnaire completed upon sample collection.

Sample collection

Fifty-five HIV-infected serum samples were collected, 39
of which were on anti-retroviral treatment regimens, pre-
dominantly non-nucleoside reverse transcriptase inhibitors
(NNRTI)-based regimens. The remaining 16 HIV-infected
samples were not on any retroviral treatment. Similarly, 30
uninfected controls were also collected. Sample collection,
preparation, and storage occurred as described by Hewer
et al. (2006) and Williams et al. (2013). Table 1 presents the
most relevant clinical information for the patients.

Mid-ATR-FTIR spectroscopy of serum

Serum samples were liquefied slowly at room temperature.
Following 30 min incubation in a 56�C water bath, 5–10 lL
serum was transferred onto separate glass slides (Kevley
Technologies, Ohio, USA) and air-dried overnight to form
homogeneous dried films. Serum samples were then scraped
off onto the diamond crystal surface area. IR spectra were
acquired in absorbance mode (mid-IR source 4000–400 cm- 1)
using a Bruker FTIR V70x spectrometer (Bruker Optik
GmbH, Karlsruhe, Germany) containing an ATR attachment
and operated by OPUS (7) software. A diamond single re-
flection ATR accessory was used to procure the mid-IR spectra
of each serum sample. A background absorption spectrum (for
atmospheric correction) was taken after every 10 samples. The
ATR diamond crystal was washed with ethanol and distilled
water (three washes) and dried with tissue before use and be-
tween each analysis. Spectra were obtained at 4 cm- 1 reso-
lution and an average of 32 scans per sample was collected.
Using OPUS software, rubberband baseline corrections and
vector normalizations were performed for all the spectra.
Differentiation was carried out using the Savitzky–Golay (SG)
algorithm (Savitzky et al., 1964) with the following settings:
number of coefficients, 17 (window size); polynomial fit order,
2; differentiation orders, 2.

Spectral processing

Processing of the serum spectra. Standardization of the
data was done as described by Hewer et al. (2006). All spectra
were normalized prior to multivariate analysis.

Table 1. Clinical Information for All

Three Experimental Groups

HIV status

HIV - HIV + ART + HIV + ART -

% Female 90% 84.6% 87.5%
% Male 10% 15.3% 12.5%
Mean age

(years) – SD
28.41 – 8.50 40.29 – 8.12 41.6 – 10.05

Mean CD4 count
(cells/mm3 blood)

ND 357.227 188.950

Viral load
(copies/mL)

N/A 17981.16 119933.95

ND = not done; N/A = not applicable.
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Linear discriminant analysis

In order to classify cases into their respective groups
(HIVpos ARTpos, HIVpos ARTneg and uninfected control), lin-
ear discriminant analysis (LDA) was used as described by
Philippeos et al. (2009) where stepwise analysis was applied to
the 1867 frequencies to obtain the best data set for the clas-
sification. The resulting classification was based on 8 out of the
1867 spectral variables, these 8 variables being the ones that
presented the highest difference between the groups. A leave-
one-out-at a time cross-validation (LOOCV) was done similar
to that described by both Hewer et al. (2006) and Philippeos
et al. (2009), where each sample was left out of the analysis
(validation data) and then classified based on the other samples
(training data). This was repeated such that each sample is left
out at least once. The discriminant functions resulting from
this analysis are depicted in the scatter plot (Fig. 1).

Multivariate statistical analysis

Prior to multivariate analysis, an inclusion criterion was
applied to the HIV-infected groups that was based on CD4
count. Only samples with CD4 count higher than 200 l/L
were included for the HIVpos ARTpos group, and only sam-
ples with CD4 count lower than 200 l/L were included for the
HIVpos ARTneg group. Also, the raw data of six control
spectra produced values that were inconsistent with instru-
ment controls and were excluded from further analysis. From
the remaining samples, the average CD4 + count for the
HIVpos ARTpos patients (n = 30) was 357.22 cells/lL, HIVpos

ARTneg patients (n = 16) was 188.95 cells/lL, and the total
number of individuals in the control group was 24.

Further analysis was performed using the SIMCA-P soft-
ware package, version 13.0 (Umetrics, Umeå, Sweden). PCA
was performed to observe inherent group clustering. Su-
pervised PLS-DA was applied to obtain improved class dis-
crimination. The leave-one-out cross-validation method was
used to validate the quality of the PLS-DA models, and the R2

and Q2 parameters were used to define the quality of the
models. R2 represents the total explained difference for the X
matrix and indicates goodness of fit, and Q2 indicates the
predictability of a model (Boccard et al., 2013; Szymanska
et al., 2012). In biological samples a good predictive capa-
bility is indicated by Q2 > 0.5 and an excellent capability is
indicated by Q2 > 0.9 (Sadeghi-Bazargani et al., 2011). The
reliability of the models was further validated by the per-
mutation test where n = 200 (Lindgren et al., 1996). In addi-
tion, OPLS-DA was used for class discrimination and
biomarker identification. OPLS-DA is a supervised method
that uses an orthogonal signal filter to find the highest co-
variance between a given dataset and the sample class. The
method was constructed using the FT-IR data as the X matrix,
and the class information identifier for the different groups as
the Y vector. The OPLS-DA model was performed to give a
clearer separation since it removes variability that is not
relevant to class separation within a given model. A more
detailed explanation of the OPLS-DA methodology can be
found in Worley and Powers (2013). Finally, in order to
access the reliability of the OPLS-DA model, analysis of

FIG. 1. Representative scatter plot of ATR-FTIR spectra obtained from HIV
infected (treated and untreated) and uninfected controls. The three experimental
groups’ discriminant functions are: 30 uninfected controls, 39 HIVpos ARTpos, and
16 HIVpos ARTneg.
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variance testing of cross-validated predictive residuals (CV-
ANOVA) was performed. CV-ANOVA is generally calcu-
lated to highlight the significance of the two group separation
in an OPLS-DA model (Ericksson et al., 2008; Wheelock and
Wheelock, 2013). In order to identify the variables respon-
sible for the separation of the groups, Variable Importance in
Projection (VIP) values was used. VIP scores are used for
variable selection as they give the discriminatory power of
each variable (Wheelock and Wheelock, 2013). VIP values
> 1.0 indicate maximum discriminatory power, whereas
those with values < 1 indicate minimal discriminatory power
(Chong et al., 2005). Significance tests using t-test was per-
formed using SPSS version 19.0. Significance was deter-
mined after ‘‘BH’’ correction and considered significant
when the p value < 0.05.

Addressing potentially confounding factors

Since the samples were from a random selection of indi-
viduals, there were a number of differences within the groups,
the biggest differences being age and gender. To gauge the
effects of each of these factors on the metabolomics profiles,
an OPLS-DA model was developed that included the effects
of age and gender. This was done by comparing the original
model with class information of Y = HIVpos ARTpos /HIVpos

HIVneg patients and uninfected controls to: i) Age model with
class information of Y = A (20–30 years) and B = (40–
60years); and ii) Gender model with class information of
Y = male and female. This comparison was done to identify
whether age and gender were major casual factors. All these
models were generated from the same dataset with the only

difference being the class information. The age and gender
models for the HIVpos ARTpos group are shown in the Sup-
plementary Material section. (Supplementary material is
available online at www.liebertpub.com/omi.)

Results

Population characterization

A total of 85 blood samples were collected, of which 30
were from uninfected healthy volunteers (uninfected con-
trols), 39 HIV-infected individuals receiving antiretroviral
treatment (HIVpos ARTpos patients), and 16 HIV-infected not
on treatment (HIVpos ARTneg patients). The ages, viral load,
and CD4 counts for the different patient groups are provided
in Table 1.

FT-IR spectra of serum samples

Representative averages of the serum FT-IR spectra of (a)
uninfected volunteers, (b) HIVpos ARTpos patients, and (c)
HIVpos ARTneg patients are shown in Figure 2A raw data and
Figure 2B second derivative in the wavelength range of 400–
4000 cm - 1. The second derivative spectra highlight small
differences that may not be visible in the raw spectra. The
standard deviation and distance between the three groups is
represented in Supplementary Figures S1 and S2. A few
absorption features were identified from all three spectral
types. These features include; the C = O stretching vibration
modes of the amide I absorption range (1652 cm - 1), coupled
N-H functional group modes of amide II (1480–1580 cm - 1),
as well as the functional group modes existing in proteins and

FIG. 2. Representative averaged ATR-FTIR spectra of serum obtained from: (A) HIV
uninfected controls (blue), HIVpos ARTpos (red), and HIVpos ARTneg ( pink). (B) Second
derivative spectra of HIV negative controls, HIVpos ARTpos and HIVpos ARTneg. Differ-
ences are visible amongst the three groups.
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amino acids (C-N stretching vibration 1200–1500 cm - 1).
Also visible are the carbohydrates (1300–925 cm - 1) and
lipid/fatty acid (3300–2800 cm - 1) absorption features. Vi-
sually, there were slight differences between the spectra of all
three groups which became more pronounced following
statistical evaluation of the data.

Linear discriminant analysis

LDA easily handles cases where the ‘within-class’ fre-
quencies are unequal and maximizes the ratio of ‘between

class’ variance to the ‘within-class’ variance in any particular
data set, thereby guaranteeing maximal separation (Fukuna-
ga, 1990). Stepwise LDA analysis was performed to confirm
that an FT-IR metabolomics approach would be capable of
distinguishing three different experimental groups as seen in
previous HIV-NMR and MS-metabolomics studies. Table 2
shows the LDA classification of samples as HIVpos ARTpos,
HIVpos ARTneg and uninfected controls, with original
grouped cases and cross-validated cases. The original clas-
sification accuracy was 78.8% and 72.9% after cross-
validation (Table 2). Both original and cross-validation
analysis verified that classification of the samples into the
three separate groups was possible. From the scatter plot (Fig.
1), the three groups show some clustering with a degree of
overlap. This overlap is probably due to related metabolic
processes occurring in all three groups. Nevertheless, LDA
was able to confirm that ATR-FTIR serum spectra of HIVpos

ARTpos, HIVpos ARTneg, and uninfected controls could be
separated into separate groups.

Discrimination between HIV-infected patients
and uninfected controls

Unsupervised PCA was performed to obtain an indication
of the variation between the mentioned experimental groups
and to identify outliers. The PCA scores plots identified a few
outliers. There are a number of reasons why an observation
may be identified as an outlier, including differences in
biochemical composition of samples, and presence of
other disease and/or infections (tuberculosis, pneumonia, or

Table 2. Classification of Samples as HIV
pos

ART
pos

and HIV
pos

ART
neg

and Uninfected Controls

Predicted Group Membership

Group HIV- Treated Untreated Total

Original
Count

HIV- 28 2 0 30
treated 4 28 7 39
untreated 1 4 11 16

%
HIV- 93.3 6.7 0.0 100.0
treated 10.3 71.8 17.9 100.0
untreated 6.3 25.0 68.8 100.0

78.8% of original grouped cases correctly classified; 72.9% of
cross-validated grouped cases correctly classified.

FIG. 3. Cross-validation of PLS-DA models obtained from 200 permutation tests. PLS-
DA plots indicating the separation between (A) uninfected controls and HIVpos ARTpos

patients, (B) uninfected controls and HIVposARTneg, and (C) HIVpos ARTpos and HIVpos

ARTneg patients.
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diabetes). Given that the removal of outliers may at times be
biased, the PCA scores plot, scores contribution plots, Ho-
tellings T2, and DModX were used to compare and verify
outliers prior to their removal. Nine outliers were identified
and excluded before further analysis. Based on the contri-
bution plot, comparisons between the outliers and the rest of
the samples within the dataset, these nine outliers exhibited
atypical intensities in the hydroxyl and protein spectral re-
gions (3300–3800 cm - 1). These observations are currently
under further investigation.

Since PCA is an unsupervised method, score plots could
not reveal an obvious separation between groups. In order to
get a clearer separation between the experimental groups,
supervised PLS-DA was applied. The PLS-DA scores plot
for HIVpos ARTpos patients versus uninfected controls (Fig.
3A) showed a minor separation (R2X = 0.615, R2Y = 0.709,
Q2 = 0.495), indicating a difference between the metabolic
profiles of HIVpos ARTpos patients and uninfected controls.
Similarly, Figure 3B shows a minor difference between
the HIVpos ARTneg patients and uninfected controls
(R2X = 0.695, R2Y = 0.8, Q2 = 0.626). In Figure 3C, there
was a degree of overlap between the HIVpos ARTpos and
HIVpos ARTneg patients, which suggests that the metabolic
profiles of those two groups are similar (R2X = 0.671,
R2Y = 0.602, Q2 = 0.12). Sensitivity, specificity, and accu-
racy of the PLS-DA models were also calculated (Table 3).
To assess the robustness of the PLS-DA models, permuta-
tion tests of 200 permutations were done. The results from
the permutations show that the original PLS-DA models
were valid, since the Q2 regression lines had a negative
intercept and the permutated data on the left was lower than
the original data on the right (Fig. 3, left panel). The PLS-
DA analysis therefore demonstrated that there were meta-
bolic differences between HIV-infected and uninfected
controls.

Identifying discriminatory metabolites

In order to identify the spectral regions/metabolites re-
sponsible for the discrimination of the three groups, OPLS-DA
was carried out with a Pareto scaling approach to further
maximize the group separation, as well as to establish a global
overview of the characteristics of the HIV-infected groups. In
the OPLS-DA score plots, the separation between the HIVpos

ARTpos patients and uninfected controls was further improved
with R2X = 0.756 and Q2 X = 0.58 (Fig. 4A, left panel). Also, a
pronounced difference between the HIVpos ARTneg group and
the uninfected control group (Fig. 4B, left panel) is apparent,

with R2X = 0.823 and Q2 = 0.674, respectively. The OPLS-DA
score plot for the HIVpos ARTpos and HIVpos ARTneg groups
showed some degree of separation, with four HIVpos ARTpos

samples appearing in the HIVpos ARTneg cluster (Fig. 4C, left
panel). The variables responsible for the discrimination in the
score plots are shown in the corresponding coefficient loading
plots (Fig. 4, right panel). In the loadings plots, the positive
direction represents variables that are more prominent in the
groups located in the positive direction of the score plot
(principal component), while those in the negative directions
denote variables that are prominent in the groups located in the
negative direction of the score plot. The color scaling maps
located on the right of the coefficient plot designates the
contribution of variables in discriminating the groups in each
score plot. In the color scaling, the red color indicates a more
significant contribution than blue.

Based on the loadings plot comparison between the HIVpos

ARTpos group and the uninfected group (Fig. 4A, right panel),
the HIVpos ARTpos group contained prominent spectral ab-
sorbance in the proteins (1600 cm- 1), lipids (3010 cm- 1), and
glucose (1035 cm- 1) spectral regions, while less prominent
spectral absorbance in the fingerprint region (665 cm- 1), some
carbohydrate regions (1299 cm- 1, 1158 cm- 1; 1498 cm- 1) as
well as the hydroxyl/protein (3257-3627 cm- 1) region could
be observed. Compared with the uninfected control group, the
HIVpos ARTneg group (Fig. 4B, right panel) was similar to the
HIVpos ARTpos, except for the more prominent absorbance
observed in the fingerprint (665 cm- 1) hydroxyl/protein
(3257–3627 cm- 1) regions. When comparing the HIVpos

ARTpos and HIVpos ARTneg groups (Fig. 4C, right panel), the
spectral absorbance in proteins (amide I) and lipid ester
(1700 cm- 1) were similar between the two groups, while the
absorbance in some carbohydrate regions were more promi-
nent in the treated group. Additionally, the spectral absorbance
of the hydroxyl (3257–3627 cm- 1), fingerprint (665 cm- 1),
and glucose region (1035 cm- 1) were prominent in the HIVpos

ARTneg group. The variables responsible for the outcome of
each OPLS-DA model are listed in Table 4 along with the
possible band assignments. Using these specific variables, we
built classification models in order to check if the discrimi-
natory power of the variables increases, decreases, or remains
the same for all three models. Since the results obtained
showed no major difference between the two models, we
continued with the original models.

CV-ANOVA tests performed on the OPLS models resulted
in p = 0.00032 for HIVpos ARTpos versus uninfected controls,
p = 0.000963 for HIVpos ARTneg versus uninfected controls,
and p = 0.230 for HIVpos ARTpos versus HIVpos ARTneg.

Table 3. Prediction Results of OPLS-DA Model Based on FT-IR Spectra

Obtained from HIV-Infected Serum and Uninfected Controls

Sensitivitya (%) Specificityb (%) Accuracyc (%) Fischer’s probabilityd

HIVposARTpos vs. control 100% 95.24% 95.2% 6.6e-12
HIVposARTneg vs. control 100% 100% 100% 1.1e-009
HIVposARTpos vs. HIVposARTneg 83.33% 100% 89.19% 6.7e-007

aSensitivity calculation was determined from the ratio of true positives (HIVpos ARTpos correctly predicted) to total number of modeled
HIVpos ARTpos spectra. bSpecificity was calculated from the ratio of true negatives (control samples correctly predicted) to total number of
modeled control spectra. cAccuracy was based on the ratio of total number of samples correctly classified to total number of samples
predicted. dProbability of a model occurring by chance, satisfied when p < 0.05. All calculations are done as widely described in the
literature.
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Age and gender effects

This was a small exploratory volunteer-based study that
was not designed to adjust for covariates. However, since age
and gender are important factors in human metabolomics
studies, we compared the original model to age and gender-
specific models. The resulting age model (Supplementary
Fig. S3B) showed that age had no influence on the original
model’s separation. Since both the original and age-specific
models were not identical to each other, we can conclude
that age was not the major variable contributing to the
original separation. The gender-specific model (Supple-
mentary Fig. S3C) was much more distinct in comparison to
the age model. However, given the low predictability
(Q2 = 0.142) and explained variation (R2 = 0.6), it is also
evident that gender was not the primary discriminatory
variable in the original OPLS-DA model. Given that gender
was a greater confounding factor than age, we removed the
seven male subjects and constructed a new OPLS-DA model
(Supplementary Fig. S4) to gauge if the effects of gender
were of significance. The removal of the male subjects seem
to have had an effect on the OPLS-DA model, however
this effect was not significant since the variables with dis-
criminatory power remained similar for both models and
model predictability (Q2 = 0.562; R2X = 0.686) did not
change dramatically.

Discussion

Numerous spectrometric metabolomics studies have
identified spectral regions with which to discriminate HIV

positive (treatment experienced and treatment-naive) from
negative sera/plasma. The spectroscopic methodologies for
which most data in this regard have been collected are NMR
and MS (Sitole et al., 2013). The purpose of the current study
was to explore the use of ATR-FTIR spectroscopy in the
detection of potential biomarkers of HIV infection and/or
antiretroviral treatment and the possibility of this methodo-
logy serving as a complementary tool for NMR and MS. The
first application of mid- ATR-FTIR to HIV infected (treated)
and uninfected sera, is presented here.

Data presented show that ATR-FTIR-based metabolic
profiling can discriminate and identify functional groups that
exist in metabolites that have been identified using other
HIV-metabolomics spectroscopic techniques. These metab-
olites include lipids, carbohydrates, and proteins. Irregula-
rities in the metabolic pathways involving these molecules
have been implicated in the development of adverse meta-
bolic effects in HIV-infected individuals (Butt et al., 2004;
Dube et al., 2003; Friis-Moller et al., 2003; John et al., 2001;
Koutkia and Grinspoon, 2003; Omech et al., 2012; Vrieskoop
et al., 2008).

Carbohydrate, lipid, and protein metabolism

It has been well documented that HIV and antiretroviral
treatment results in disruptions of lipid, carbohydrate, amino
acid, and protein metabolism in HIVpos ARTpos individuals
(Carr et al., 1998; Dube et al., 1997; Duong Van Huyen, 2003;
Karamchand et al., 2008; Mulligan et al., 2000). Here, the most
significant vibrations were detected in the proteins (1600 cm-1,
1652 cm-1), carbohydrate (1035 cm-1, 1158 cm-1, 1498 cm-1),

FIG. 4. Multivariate statistical analysis of ATR-FTIR-based serum spectra obtained
from HIV uninfected patients and uninfected controls. Scores plots (right panel) and
loadings coefficient plots (left panel) generated from: (A) uninfected control vs. HIVpos

ARTpos patients, (B) HIV uninfected control vs. HIVpos ARTneg, and (C) HIVpos ARTneg

vs. HIVpos ARTneg patients. Assignments for spectral regions are shown in Figure 2.
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and lipid/fatty acid (3010 cm-1) spectral regions. These results
are in agreement with our previous observations where NMR-
based metabolomics identified significant differences in lipids
and glucose between HIVpos ARTpos, HIVpos ARTneg, and
uninfected controls (Hewer et al., 2006; Philippeos et al.,
2009).

In their Multicenter AIDS Cohort study, Brown et al.
(2005), using both prevalence and incidence analysis, dem-
onstrated that HIV-positive men on any ART regimen had a
four times greater chance of developing diabetes than did
their uninfected counterparts, suggesting that metabolites
associated with lipid and glucose metabolism are likely
biomarkers for discriminating among HIV-infected individ-
uals on various ART regimens.

Elevations of cholesterol increased the risk of heart
disease in HIV-positive persons (Friis-Moller et al., 2003).
Significant differences in spectral regions (of C-H, CH2,

and CH3 vibrations) of both cholesterol and phospho-
lipids were observed here when comparing uninfected
controls and HIV-positive individuals. This is suggestive
of a relationship between antiretrovirals and changes in
cholesterol levels. Because HIV infection and its treat-

ment have been linked to elevated levels of low-density
lipoprotein (LDL), data presented here is reason to assume
that ATR-FTIR may be developed into a screening mech-
anism for virus/treatment-induced cardiovascular compli-
cations.

When comparing HIVpos ARTneg subjects to HIVpos

ARTpos and uninfected controls, distinct differences were
observed in the fingerprint region specifically between
665 cm - 1–900 cm - 1. The HIVpos ARTneg displayed larger
differences in this region compared to samples from trea-
ted individuals; this is in agreement with Bahmani et al.
(2009) who reported significant differences between HIV-
infected (untreated) samples and healthy controls in this
spectral region. Changes in this region are assigned to
vibrations of ArCH, ROH, and RNH2 whose func-
tional groups form part of the structure of the mentioned
metabolites.

Possibly confounding factors

In studies involving metabolic changes due to any stimuli,
age and gender can potentially be confounding factors, given

Table 4. Possible IR Band Assignments of Variables with Highest Discriminatory Power for:

HIV
pos

ART
pos

, HIV
pos

ART
neg

and Uninfected Control Models

Aa vs. Bb Aa vs. Cc Bb vs. Cc

Variables (cm - 1) Literature Assignmentsd P valuee VIPf P valuee VIPf P valuese VIPf

3000–2800 cm - 1 C-H str (asym) of –CH2-and –CH3- lipids
3303 0.0728 2.1 0.1382 1.0 0.0127 1.8
3266 0.2280 0.7 0.0296 1.7 0.0043 2.1
3270 0.1793 0.9 0.0316 1.7 0.0042 2.1

1700–1600 cm - 1 Amide I (proteins)
1652 0.0098 2.6 < 0.0001 4.3 0.0001 3.1
1654 0.0088 2.7 < 0.0001 4.3 0.0001 3.2
1656 0.0088 2.5 < 0.0001 4.2 < 0.0001 3.1
1650 0.0174 2.5 < 0.0001 4.2 0.0002 3.1
1648 0.0507 2.1 < 0.0001 4.0 0.0004 3.0
1617 0.0242 3.74 0.0533 2.4 0.0379 0.0
1619 0.0088 3.72 0.0827 2.3 0.7441 0.1
1616 0.0088 3.71 0.0378 2.4 0.8673 0.0
1621 0.0088 3.64 0.1294 2.1 0.6948 0.1
1614 0.0088 3.63 0.0316 2.4 0.8839 0.0
1623 0.0098 3.51 0.1983 1.8 0.6424 0.3

1600–1500 cm - 1 Amide II (proteins)
1500 0.0088 2.83 0.1255 2.1 0.6517 2.1
1504 0.0088 2.9 0.1983 1.0 0.3924 0.8
1527 0.7846 0.3 0.0223 0.9 0.0127 2.0
1498 0.0104 2.6 0.1134 1.0 0.7441

1350–1240 cm - 1 Amide III (proteins)
1303 0.0088 2.1 < 0.0001 2.6 0.0147 1.3
1299-1290 0.0083 2.1 < 0.0001 2.8 0.0005 1.5

1200–900 cm - 1 C-O and C-C str, deformation
of carbohydrates and glucose region

1035 0.7876 0.8 0.0285 1.7 0.0345 1.0
665 0.2730 01 0.0109 1.7 0.0391 1.6

Assignments made based on literature guidelines (Gunasekaran et al., 2010; Jackson et al., 1996; Petrich et al., 2001).
aThe symbol A represents the uninfected control group, bRepresents the HIVposARTpos and cRepresents the HIVposARTneg.
dAll literature assignments were made based on literature findings.
eP values calculated using the t-test and values that are significant after ‘‘BH’’ correction are indicated.
fVIP values generated from the OPLS-DA model (values > 1)
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the effect of these aspects on metabolism. In this study there
were differences between age and gender in the three ex-
perimental groups, which is why these two factors were
considered as class identifiers (Y-vector) in the statistical
model (Supplementary Figs. S3 and S4). The age and gen-
der statistical models were different from the original
models where HIVpos ARTpos was compared to uninfected
control subjects. The age and gender models show that
neither age nor gender were confounding factors in the
current study.

ATR-FTIR as a metabolomics tool

NMR and MS are the most widely used metabolomics
tools, due to advanced levels of sensitivity and specificity.
These methods are however very expensive, difficult to ac-
cess in resource limited settings, and above all, require expert
knowledge for instrument operation and data interpretation.
The benefits of FTIR spectroscopy over NMR and MS is its
lower cost and easier operation. FTIR cannot replace NMR
and MS, but given the proven ability of this instrument in
detecting and identifying differential metabolites (Ellis et al.,
2006), this type of vibrational spectroscopy is capable of
providing information in line with that of more sensitive
techniques. Results obtained from this study are comparable
to our previous findings (Hewer et al., 2006; Philippeos et al.,
2009), confirming the ability of FTIR spectroscopy to pro-
duce data relatable to that of NMR and MS metabolomics.
Also, given its proven ability as a diagnostic tool in other
diseases (as highlighted by Dorling and Baker, 2013), ATR-
FTIR may find useful application in HIV-metabolomics-
based monitoring of disease progression or treatment success
following further development and validation of the ap-
proach.

In conclusion, differences in the sera of HIV-infected
(treated and untreated) individuals and uninfected controls
were identified with a mid-ATR-FTIR metabolomics ap-
proach. The current study was limited in sample size but
provided original insights for novel systems diagnostics
for HIV/AIDS. This work has demonstrated the reliabil-
ity, simplicity, and predictive ability of FTIR-based me-
tabolomics in discriminating between the experimental
groups studied in our sample. Future studies with larger
subject numbers are warranted to expand upon the present
findings.
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