67 research outputs found

    Essential function for ErbB3 in breast cancer proliferation

    Get PDF
    The overexpression of the ErbB family of tyrosine kinase receptors is thought to be important in the development of many breast tumours. To date, most attention has focused on the ErbB2 receptor. Now, in a recent report, it has been shown that ErbB3 is a critical partner for the transforming activity of ErbB2 in breast cancer cells. Importantly, the proliferative signals from this transforming complex appear to act via the PI-3 kinase pathway

    Stabilization of ribozyme-like cis-noncoding rRNAs induces apoptotic and nonapoptotic death in lung cells

    Get PDF
    Bidirectional non-protein-coding RNAs are ubiquitously transcribed from the genome. Convergent sense and antisense transcripts may regulate each other. Here, we examined the convergent cis-noncoding rRNAs (nc-rRNAs) in A5 and E9 lung cancer models. Sense nc-rRNAs extending from rDNA intergenic region to internal transcribed spacer of around 10 kb in length were identified. nc-rRNAs in sense direction exhibited in vitro characteristics of ribozymes, namely, degradation upon incubation with MgCl2 and stabilization by complementary oligonucleotides. Detection of endogenous cleavage-ligation products carrying internal deletion of hundreds to thousands nucleotides by massively parallel sequencing confirmed the catalytic properties. Transfection of oligonucleotides pairing with antisense nc-rRNAs stabilized both target and complementary transcripts, perturbed rRNA biogenesis, and induced massive cell death via apoptotic and/or nonapoptotic mechanisms depending on cell type and treatment. Oligonucleotides targeting cellular sense transcripts are less responsive. Spontaneously detached cells, though rare, also showed accumulation of nc-rRNAs and perturbation of rRNA biogenesis. Direct participation of nc-rRNAs in apoptotic and nonapoptotic death was demonstrated by transfection of synthetic nc-rRNAs encompassing the rDNA promoter. In sum, convergent cis-nc-rRNAs follow a feed-forward mechanism to regulate each other and rRNA biogenesis. This opens an opportunity to disrupt rRNA biogenesis, commonly upregulated in cancers, via inhibition of ribozyme-like activities in nc-rRNAs

    A Neutralizing RNA Aptamer against EGFR Causes Selective Apoptotic Cell Death

    Get PDF
    Nucleic acid aptamers have been developed as high-affinity ligands that may act as antagonists of disease-associated proteins. Aptamers are non immunogenic and characterised by high specificity and low toxicity thus representing a valid alternative to antibodies or soluble ligand receptor traps/decoys to target specific cancer cell surface proteins in clinical diagnosis and therapy. The epidermal growth factor receptor (EGFR) has been implicated in the development of a wide range of human cancers including breast, glioma and lung. The observation that its inhibition can interfere with the growth of such tumors has led to the design of new drugs including monoclonal antibodies and tyrosine kinase inhibitors currently used in clinic. However, some of these molecules can result in toxicity and acquired resistance, hence the need to develop novel kinds of EGFR-targeting drugs with high specificity and low toxicity. Here we generated, by a cell-Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach, a nuclease resistant RNA-aptamer that specifically binds to EGFR with a binding constant of 10 nM. When applied to EGFR-expressing cancer cells the aptamer inhibits EGFR-mediated signal pathways causing selective cell death. Furthermore, at low doses it induces apoptosis even of cells that are resistant to the most frequently used EGFR-inhibitors, such as gefitinib and cetuximab, and inhibits tumor growth in a mouse xenograft model of human non-small-cell lung cancer (NSCLC). Interestingly, combined treatment with cetuximab and the aptamer shows clear synergy in inducing apoptosis in vitro and in vivo. In conclusion, we demonstrate that this neutralizing RNA-aptamer is a promising bio-molecule that can be developed as a more effective alternative to the repertoire of already existing EGFR-inhibitors

    Molecular Effects of Doxycycline Treatment on Pterygium as Revealed by Massive Transcriptome Sequencing

    Get PDF
    Pterygium is a lesion of the eye surface which involves cell proliferation, migration, angiogenesis, fibrosis, and extracellular matrix remodelling. Surgery is the only approved method to treat this disorder, but high recurrence rates are common. Recently, it has been shown in a mouse model that treatment with doxycycline resulted in reduction of the pterygium lesions. Here we study the mechanism(s) of action by which doxycycline achieves these results, using massive sequencing techniques. Surgically removed pterygia from 10 consecutive patients were set in short term culture and exposed to 0 (control), 50, 200, and 500 µg/ml doxycycline for 24 h, their mRNA was purified, reverse transcribed and sequenced through Illumina’s massive sequencing protocols. Acquired data were subjected to quantile normalization and analyzed using cytoscape plugin software to explore the pathways involved. False discovery rate (FDR) methods were used to identify 332 genes which modified their expression in a dose-dependent manner upon exposure to doxycycline. The more represented cellular pathways included all mitochondrial genes, the endoplasmic reticulum stress response, integrins and extracellular matrix components, and growth factors. A high correlation was obtained when comparing ultrasequencing data with qRT-PCR and ELISA results

    Prediction and Testing of Biological Networks Underlying Intestinal Cancer

    Get PDF
    Colorectal cancer progresses through an accumulation of somatic mutations, some of which reside in so-called “driver” genes that provide a growth advantage to the tumor. To identify points of intersection between driver gene pathways, we implemented a network analysis framework using protein interactions to predict likely connections – both precedented and novel – between key driver genes in cancer. We applied the framework to find significant connections between two genes, Apc and Cdkn1a (p21), known to be synergistic in tumorigenesis in mouse models. We then assessed the functional coherence of the resulting Apc-Cdkn1a network by engineering in vivo single node perturbations of the network: mouse models mutated individually at Apc (Apc1638N+/−) or Cdkn1a (Cdkn1a−/−), followed by measurements of protein and gene expression changes in intestinal epithelial tissue. We hypothesized that if the predicted network is biologically coherent (functional), then the predicted nodes should associate more specifically with dysregulated genes and proteins than stochastically selected genes and proteins. The predicted Apc-Cdkn1a network was significantly perturbed at the mRNA-level by both single gene knockouts, and the predictions were also strongly supported based on physical proximity and mRNA coexpression of proteomic targets. These results support the functional coherence of the proposed Apc-Cdkn1a network and also demonstrate how network-based predictions can be statistically tested using high-throughput biological data

    Alternative HER/PTEN/Akt Pathway Activation in HPV Positive and Negative Penile Carcinomas

    Get PDF
    Copyright: 2011 Stankiewicz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: The pathogenesis of penile squamous cell carcinoma (PSCC) is not well understood, though risk factors include human papillomavirus (HPV). Disruption of HER/PTEN/Akt pathway is present in many cancers; however there is little information on its function in PSCC. We investigated HER family receptors and phosphatase and tension homolog (PTEN) in HPV-positive and negative PSCC and its impact on Akt activation using immunohistochemistry and fluorescent in situ hybridisation (FISH). Methodology/Principal Findings: 148 PSCCs were microarrayed and immunostained for phosphorylated EGFR (pEGFR), HER2, HER3, HER4, phosphorylated Akt (pAkt), Akt1 and PTEN proteins. EGFR and PTEN gene status were also evaluated using FISH. HPV presence was assessed by PCR. pEGFR expression was detected significantly less frequently in HPV-positive than HPV-negative tumours (p = 0.0143). Conversely, HER3 expression was significantly more common in HPV-positive cases (p = 0.0128). HER4, pAkt, Akt and PTEN protein expression were not related to HPV. HER3 (p = 0.0054) and HER4 (p = 0.0002) receptors significantly correlated with cytoplasmic Akt1 immunostaining. All three proteins positively correlated with tumour grade (HER3, p = 0.0029; HER4, p = 0.0118; Akt1, p = 0.0001). pEGFR expression correlated with pAkt but not with tumour grade or stage. There was no EGFR gene amplification. HER2 was not detected. PTEN protein expression was reduced or absent in 62% of tumours but PTEN gene copy loss was present only in 4% of PSCCs. Conclusions/Significance: EGFR, HER3 and HER4 but not HER2 are associated with penile carcinogenesis. HPV-negative tumours tend to express significantly more pEGFR than HPV-positive cancers and this expression correlates with pAkt protein, indicating EGFR as an upstream regulator of Akt signalling in PSCC. Conversely, HER3 expression is significantly more common in HPV-positive cases and positively correlates with cytoplasmic Akt1 expression. HER4 and PTEN protein expression are not related to HPV infection. Our results suggest that PSCC patients could benefit from therapies developed to target HER receptors.Peer reviewedFinal Published versio

    Epidermal growth factor regulates Mcl-1 expression through the MAPK-Elk-1 signalling pathway contributing to cell survival in breast cancer

    Get PDF
    Myeloid cell leukaemia-1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 family that is elevated in a variety of tumour types including breast cancer. In breast tumours, increased Mcl-1 expression correlates with high tumour grade and poor patient survival. We have previously demonstrated that Her-2 levels correspond to increased Mcl-1 expression in breast tumours. Epidermal growth factor (EGF) receptor signalling is frequently deregulated in breast cancer and leads to increased proliferation and survival. Herein, we determined the critical downstream signals responsible for the EGF mediated increase of Mcl-1 and their role in cell survival. We found that both Mcl-1 mRNA and protein levels are rapidly induced upon stimulation with EGF. Promoter analysis revealed that an Elk-1 transcription factor-binding site is critical for EGF activation of the Mcl-1 promoter. Furthermore, we found that knockdown of Elk-1or inhibition of the Erk signalling pathway was sufficient to block EGF upregulation of Mcl-1 and EGF mediated cell survival. Using chromatin immunoprecipitation and biotin labelled probes of the Mcl-1 promoter, we found that Elk-1 and serum response factor are bound to the promoter after EGF stimulation. To determine whether Mcl-1 confers a survival advantage, we found that knockdown of Mcl-1 expression increased apoptosis whereas overexpression of Mcl-1 inhibited drug induced cell death. In human breast tumours, we found a correlation between phosphorylated Elk-1 and Mcl-1 protein levels. These results indicate that the EGF induced activation of Elk-1 is an important mediator of Mcl-1 expression and cell survival and therefore a potential therapeutic target in breast cancer
    corecore