567 research outputs found

    Verification of band offsets and electron effective masses in GaAsN/GaAs quantum wells : Spectroscopic experiment versus 10-band k.p modeling

    Get PDF
    Optical transitions in GaAs1-xNx/GaAs quantum wells (QWs) have been probed by two complementary techniques, modulation spectroscopy in a form of photoreflectance and surface photovoltage spectroscopy. Transition energies in QWs of various widths and N contents have been compared with the results of band structure calculations based on the 10-band k.p Hamiltonian. Due to the observation of higher order transitions in the measured spectra, the band gap discontinuities at the GaAsN/GaAs interface and the electron effective masses could be determined, both treated as semi-free parameters to get the best matching between the theoretical and experimental energies. We have obtained the chemical conduction band offset values of 86% for x = 1.2% and 83% for x = 2.2%, respectively. For these determined band offsets, the electron effective masses equal to about 0.09 m(o) in QWs with 1.2% N and 0.15 m(o) for the case of larger N content of 2.2%.Publisher PDFPeer reviewe

    Black Hole Lightning from the Peculiar Gamma-Ray Loud Active Galactic Nucleus IC 310

    Full text link
    The nearby active galaxy IC 310, located in the outskirts of the Perseus cluster of galaxies is a bright and variable multi-wavelength emitter from the radio regime up to very high gamma-ray energies above 100 GeV. Originally, the nucleus of IC 310 has been classified as a radio galaxy. However, studies of the multi-wavelength emission showed several properties similarly to those found from blazars as well as radio galaxies. In late 2012, we have organized the first contemporaneous multi-wavelength campaign including radio, optical, X-ray and gamma-ray instruments. During this campaign an exceptionally bright flare of IC 310 was detected with the MAGIC telescopes in November 2012 reaching an averaged flux level in the night of up to one Crab above 1 TeV with a hard spectrum over two decades in energy. The intra-night light curve showed a series of strong outbursts with flux-doubling time scales as fast as a few minutes. The fast variability constrains the size of the gamma-ray emission regime to be smaller than 20% of the gravitational radius of its central black hole. This challenges the shock acceleration models, commonly used to explain gamma-ray radiation from active galaxies. Here, we will present more details on the MAGIC data and discuss several possible alternative emission models.Comment: 8 pages, 5 figures, Proceedings of the 34th International Cosmic Ray Conference, 30 July - 6 August, 2015, The Hague, The Netherland

    MARS, the MAGIC Analysis and Reconstruction Software

    Full text link
    With the commissioning of the second MAGIC gamma-ray Cherenkov telescope situated close to MAGIC-I, the standard analysis package of the MAGIC collaboration, MARS, has been upgraded in order to perform the stereoscopic reconstruction of the detected atmospheric showers. MARS is a ROOT-based code written in C++, which includes all the necessary algorithms to transform the raw data recorded by the telescopes into information about the physics parameters of the observed targets. An overview of the methods for extracting the basic shower parameters is presented, together with a description of the tools used in the background discrimination and in the estimation of the gamma-ray source spectra.Comment: 4 pages, 0 figures, submitted to the 31st International Cosmic Ray Conference, {\L}odz 200

    Insights into the particle acceleration of a peculiar gamma -ray radio galaxy IC 310

    Full text link
    IC 310 has recently been identified as a gamma-ray emitter based on observations at GeV energies with Fermi-LAT and at very high energies (VHE, E > 100 GeV) with the MAGIC telescopes. Despite IC 310 having been classified as a radio galaxy with the jet observed at an angle > 10 degrees, it exhibits a mixture of multiwavelength properties of a radio galaxy and a blazar, possibly making it a transitional object. On the night of 12/13th of November 2012 the MAGIC telescopes observed a series of violent outbursts from the direction of IC 310 with flux-doubling time scales faster than 5 min and a peculiar spectrum spreading over 2 orders of magnitude. Such fast variability constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole, challenging the shock acceleration models, commonly used in explanation of gamma-ray radiation from active galaxies. Here we will show that this emission can be associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the jet.Comment: 2014 Fermi Symposium proceedings - eConf C14102.

    Diversity of Arbuscular Mycorrhizal Fungi in the Rhizosphere of Solaris and Regent Grapevine Plants Treated with Bioproducts

    Get PDF
    The aim of this study was to identify the spores of arbuscular mycorrhizal fungi (AMF) in the rhizosphere of Solaris and Regent grapevine plants grafted onto SO4 rootstock and treated with bioproducts. The bioproducts Ausuma, Bioilsa, manure and BF Ekomix were tested and applied on their own, or combined with standard mineral fertilisation (NPK). The applied bioproducts contributed to an increase in the number of species of mycorrhizal fungi in the rhizosphere soil of the grapevines. The most frequently occurring AMF species was Claroideoglomus claroideum. Biopreparation BF Ekomix was a promisingagent for increasing the number of AMF spores in the rhizosphere of Regent grapevines. In the rhizosphere of Solaris, a positive influence on the number of spores occurred after the application of Bioilsa

    Wetting layer states of InAs/GaAs self-assembled quantum dot structures. Effect of intermixing and capping layer

    Get PDF
    The authors present a modulated reflectivity study of the wetting layer (WL) states in mol. beam epitaxy grown InAs/GaAs quantum dot (QD) structures designed to emit light in the 1.3-1.5 micro m range. A high sensitivity of the technique has allowed the observation of all optical transitions in the QD system, including low oscillator strength transitions related to QD ground and excited states, and the ones connected with the WL quantum well (QW). The support of WL content profiles, detd. by transmission electron microscopy, has made it possible to analyze in detail the real WL QW confinement potential which was then used for calcg. the optical transition energies. In spite of a very effective WL QW intermixing, mainly due to the Ga-In exchange process (causing the redn. of the max. indium content in the WL layer to about 35% from nominally deposited InAs), the transition energies remain almost unaffected. The latter effect could be explained in effective mass envelope function calcns. taking into account the intermixing of the QW interfaces described within the diffusion model. We have followed the WL-related transitions of 2 closely spaced QD layers grown at different temps., as a function of the In content in the capping layer. Changing the capping layer from pure GaAs to In0.236Ga0.764As has no significant influence on the compn. profile of the WL itself and the WL QW transitions can be usually interpreted properly when based on the cap-induced modification of the confinement potential within a squarelike QW shape approxn. However, some of the obsd. features could be explained only after taking into consideration the effects of intermixing and InGaAs cap layer decompn. [on SciFinder (R)

    An ellipsoidal mirror for focusing neutral atomic and molecular beams

    Get PDF
    Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) ÎŒm×(31.4±0.8) ÎŒm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope
    • 

    corecore