52 research outputs found

    Nonalcoholic Fatty Liver Disease in Children: Role of the Gut Microbiota

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common cause of liver disease among children and adolescents in industrialized countries due to increasing prevalence of obesity. It is generally recognized that both genetic and environmental risk factors contribute to the pathogenesis of NAFLD. Convincing evidences have shown that gut microbiota alteration is associated with NAFLD pathogenesis both in patients and animal models. Bacterial overgrowth and increased intestinal permeability are evident in NAFLD patients and lead to increased delivery of gut-derived bacterial products, such as lipopolysaccharide and bacterial DNA, to the liver through portal vein and then activation of toll-like receptors (TLRs), mainly TLR4 and TLR9, and their downstream cytokines and chemokines, resulting in hepatic inflammation. Currently, the role of gut microbiota in the pathogenesis of NAFLD is still the focus of many active clinical/basic researches. Modulation of gut microbiota with probiotics or prebiotics has been targeted as a preventive or therapeutic strategy on this pathological condition. Their beneficial effects on the NAFLD have been demonstrated in animal models and limited human studies

    Nontyphoidal Salmonella

    Get PDF

    The potential for pre-, pro- and synbiotics in the management of infants at risk of cow's milk allergy or with cow's milk allergy: An exploration of the rationale, available evidence and remaining questions

    Get PDF
    Cow's milk allergy is one of the most commonly reported childhood food allergies, with increasing incidence, persistence and severity in many countries across the world. The World Allergy Organization Special Committee on Food Allergy has identified cow's milk allergy as an area in need of a rationale-based approach in order to make progress against what it considered an onerous problem, with worldwide public health impact. There is growing interest in the potential role of the gut microbiota in the early programming and development of immune responses and allergy. This discussion paper considers the rationale and available evidence for modulation of the gut microbiota and for the use of synbiotics in the management of infants at risk of, or living with cow's milk allergy and summarizes remaining research questions that need to be answered for the development of evidence-based recommendations

    Evaluation of a new fluorescence quantitative PCR test for diagnosing Helicobacter pylori infection in children

    Get PDF
    Abstract Background Numerous diagnostic tests are available to detect Helicobactor pylori (H. pylori). There has been no single test available to detect H. pylori infection reliably. We evaluated the accuracy of a new fluorescence quantitative PCR (fqPCR) for H. pylori detection in children. Methods Gastric biopsy specimens from 138 children with gastritis were sent for routine histology exam, rapid urease test (RUT) and fqPCR. 13C-urea breath test (13C-UBT) was carried out prior to endoscopic procedure. Gastric fluids and dental plaques were also collected for fqPCR analysis. Results 38 children (27.5%) were considered positive for H. pylori infection by gold standard (concordant positive results on 2 or more tests). The remaining 100 children (72.5%) were considered negative for H. pylori. Gastric mucosa fqPCR not only detected all 38 H. pylori positive patients but also detected 8 (8%) of the 100 gold standard-negative children or 11 (10.7%) of the 103 routine histology-negative samples. Therefore, gastric mucosa fqPCR identified 46 children (33.3%) with H. pylori infection, significantly higher than gold standard or routine histology (P<0.01). Both gastric fluid and dental plaque fqPCR only detected 32 (23.2%) and 30 (21.7%) children with H. pylori infection respectively and was significantly less sensitive than mucosa fqPCR (P<0.05) but was as sensitive as non-invasive UBT. Conclusions Gastric mucosa fqPCR was more sensitive than routine histology, RUT, 13C-UBT alone or in combination to detect H. pylori infection in children with chronic gastritis. Either gastric fluid or dental plaque PCR is as reliable as 13C-UBT for H. pylori detection.Peer Reviewe

    Human Norovirus NTPase Antagonizes Interferon-β Production by Interacting With IkB Kinase ε.

    Get PDF
    Human norovirus (HuNoV) is the leading cause of epidemic acute gastroenteritis worldwide. Type I interferons (IFN)-α/β are highly potent cytokines that are initially identified for their essential roles in antiviral defense. It was reported that HuNoV infection did not induce IFN-β expression but was controlled in the presence of IFN-β in human intestinal enteroids and a gnotobiotic pig model, suggesting that HuNoV has likely developed evasion countermeasures. In this study, we found that a cDNA clone of GII.4 HuNoV, the predominantly circulating genotype worldwide, inhibits the production of IFN-β and identified the viral NTPase as a key component responsible for such inhibition. HuNoV NTPase not only inhibits the activity of IFN-β promoter but also the mRNA and protein production of IFN-β. Additional studies indicate that NTPase inhibits the phosphorylation and nuclear translocation of interferon-regulatory factor-3 (IRF-3), leading to the suppression of IFN-β promoter activation. Mechanistically, NTPase interacts with IkB kinase ε (IKKε), an important factor for IRF-3 phosphorylation, and such interaction blocks the association of IKKε with unanchored K48-linked polyubiquitin chains, resulting in the inhibition of IKKε phosphorylation. Further studies demonstrated that the 1-179 aa domain of NTPase which interacts with IKKε is critical for the suppression of IFN-β production. Our findings highlight the role of HuNoV NTPase in the inhibition of IFN-β production, providing insights into a novel mechanism underlying how HuNoV evades the host innate immunity

    Herpes Simplex Virus Type 2 Infection-Induced Expression of CXCR3 Ligands Promotes CD4(+) T Cell Migration and Is Regulated by the Viral Immediate-Early Protein ICP4

    Get PDF
    HSV-2 infection-induced CXCR3 ligands are important for the recruitment of virus-specific CD8+ T cells, but their impact on CD4+ T cell trafficking remains to be further determined. Given that recruitment of CD4+ T cells to infection areas may be one of the mechanisms that account for HSV-2 infection-mediated enhancement of HIV-1 sexual transmission, here we investigated the functionality of HSV-2 infection-induced CXCR3 ligands CXCL9, CXCL10, and CXCL11 in vivo and in vitro, and determined the viral components responsive for such induction and the underlying mechanisms. We first found that the expression of CXCR3 ligands CXCL9, CXCL10, and CXCL11 was increased in mice following vaginal challenge with HSV-2, while CXCL9 played a predominant role in the recruitment of CD4+ T cells to the vaginal foci of infected mice. HSV-2 infection also induced the production of CXCL9, CXCL10, and CXCL11 in human cervical epithelial cells. Of note, although HSV-2 induced the expression of all the three CXCR3 ligands, the induced CXCL9 appeared to play a predominant role in promoting CD4+ T cell migration, reflecting that the concentrations of CXCL10 and CXCL11 required for CD4+ T cell migration are higher than that of CXCL9. We further revealed that, ICP4, an immediate-early protein of HSV-2, is crucial in promoting CXCR3 ligand expression through the activation of p38 MAPK pathway. Mechanistically, ICP4 binds to corresponding promoters of CXCR3 ligands via interacting with the TATA binding protein (TBP), resulting in the transcriptional activation of the corresponding promoters. Taken together, our study highlights HSV-2 ICP4 as a vital viral protein in promoting CXCR3 ligand expression and CXCL9 as the key induced chemokine in mediating CD4+ T cell migration. Findings in this study have shed light on HSV-2 induced leukocyte recruitment which may be important for understanding HSV-2 infection-enhanced HIV-1 sexual transmission and the development of intervention strategies

    Prevalence and Characterization of Staphylococcus aureus Isolated From Women and Children in Guangzhou, China

    Get PDF
    The prevalent Staphylococcus aureus clones and antibiotic susceptibility profiles are known to change dynamically and geographically; however, recent S. aureus strains causing infections in women and children in China have not been characterized. In this study, we analyzed the molecular epidemiology and antimicrobial resistance of S. aureus isolated from patients in four centers for women and children in Guangzhou, China. In total, 131 S. aureus isolates (100 from children and 31 from women) were analyzed by spa typing, multi-locus sequence typing, virulence gene and antimicrobial resistance profiling, staphylococcal chromosomal cassette mec typing, and mutation analyses of rpoB. A total of 58 spa types, 27 sequence types (STs), and 10 clonal complexes (CCs) were identified. While CC59 (ST59-IV, 48.8%; ST338-III, 35.7%) and CC45 (ST45-IV, 100%) were the major clones (84.4%) among MRSA isolates, CC5 (ST188, 24.3%; ST1, 21.6%) and CC398 (ST398, 70%) were the major ones (70.1%) among MSSA isolates. ST338-MRSA-III mostly found in pus but hardly in respiratory tract samples while ST45-MRSA-IV was on the opposite, even though they both found in blood and cerebrospinal fluid sample frequently. Staphylococcal enterotoxin genes seb-seq-sek were strongly associated with ST59 and ST338, while sec was associated with ST45, ST121, ST22, and ST30. All ST338, ST1232, and SCCmec III isolates carried lukF/S-PV genes. A total of 80% of ST338 isolates were resistant to erythromycin, clindamycin, and tetracycline. All ST45 isolates exhibited intermediate or complete resistance to rifampicin. In total, 481 HIS/ASN mutations in rpoB were found in rifampicin-resistant or intermediate-resistant isolates. ST338-III and ST45-IV emerged as two of three major clones in MRSA isolates from women and children in Guangzhou, China, though ST59-MRSA-IV remained the most prevalent MRSA clone. Clonal distribution of S. aureus varied, depending on the specimen source. Virulence genes and antibiograms were closely associated with the clonal lineage. These results clarified the molecular epidemiology of S. aureus from women and children in Guangzhou, China, and provide critical information for the control and treatment of S. aureus infections

    Risk factors and early markers for echovirus type 11 associated haemorrhage-hepatitis syndrome in neonates, a retrospective cohort study

    Get PDF
    BackgroundEchovirus type 11(E-11) can cause fatal haemorrhage-hepatitis syndrome in neonates. This study aims to investigate clinical risk factors and early markers of E-11 associated neonatal haemorrhage-hepatitis syndrome.MethodsThis is a multicentre retrospective cohort study of 105 neonates with E-11 infection in China. Patients with haemorrhage-hepatitis syndrome (the severe group) were compared with those with mild disease. Clinical risk factors and early markers of haemorrhage-hepatitis syndrome were analysed. In addition, cytokine analysis were performed in selective patients to explore the immune responses.ResultsIn addition to prematurity, low birth weight, premature rupture of fetal membrane, total parenteral nutrition (PN) (OR, 28.7; 95% CI, 2.8–295.1) and partial PN (OR, 12.9; 95% CI, 2.2–77.5) prior to the onset of disease were identified as risk factors of developing haemorrhage-hepatitis syndrome. Progressive decrease in haemoglobin levels (per 10 g/L; OR, 1.5; 95% CI, 1.1–2.0) and platelet (PLT) < 140 × 10⁹/L at early stage of illness (OR, 17.7; 95% CI, 1.4–221.5) were associated with the development of haemorrhage-hepatitis syndrome. Immunological workup revealed significantly increased interferon-inducible protein-10(IP-10) (P < 0.0005) but decreased IFN-α (P < 0.05) in peripheral blood in severe patients compared with the mild cases.ConclusionsPN may potentiate the development of E-11 associated haemorrhage-hepatitis syndrome. Early onset of thrombocytopenia and decreased haemoglobin could be helpful in early identification of neonates with the disease. The low level of IFN-α and elevated expression of IP-10 may promote the progression of haemorrhage-hepatitis syndrome

    Cord blood CD8+ t cells have a natural propensity to express IL-4 in a fatty acid metabolism and caspase activation-dependent manner

    Get PDF
    How T cells differentiate in the neonate may critically determine the ability of the infant to cope with infections, respond to vaccines and avert allergies. Previously, we found that naïve cord blood CD4+ T cells differentiated toward an IL-4-expressing phenotype when activated in the presence of TGF-β and monocyte-derived inflammatory cytokines, the latter are more highly secreted by infants who developed food allergy. Here, we show that in the absence of IL-2 or IL-12, naïve cord blood CD8+ T cells have a natural propensity to differentiate into IL-4-producing non-classic TC2 cells when they are activated alone, or in the presence of TGF-β and/or inflammatory cytokines. Mechanistically, non-classic TC2 development is associated with decreased expression of IL-2 receptor alpha (CD25) and glycolysis, and increased fatty acid metabolism and caspase-dependent cell death. Consequently, the short chain fatty acid, sodium propionate (NaPo), enhanced IL-4 expression, but exogenous IL-2 or pan-caspase inhibition prevented IL-4 expression. In children with endoscopically and histologically confirmed non-inflammatory bowel disease and non-infectious pediatric idiopathic colitis, the presence of TGF-β, NaPo, and IL-1β or TNF-α promoted TC2 differentiation in vitro. In vivo, colonic mucosa of children with colitis had significantly increased expression of IL-4 in CD8+ T cells compared with controls. In addition, activated caspase-3 and IL-4 were co-expressed in CD8+ T cells in the colonic mucosa of children with colitis. Thus, in the context of colonic inflammation and limited IL-2 signaling, CD8+ T cells differentiate into non-classic TC2 that may contribute to the pathology of inflammatory/allergic diseases in children

    Prevalence of primary biliary cirrhosis in adults referring hospital for annual health check-up in Southern China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary biliary cirrhosis (PBC) is an autoimmune liver disease characterized by the presence of anti-mitocondrial autoantibodies (AMA) which has an essential role also for diagnosis. In addition, also some anti-nuclear antibodies (ANA) have been shown to be highly specific PBC. The purpose of this study was to assess the prevalence of PBC among the adults referring hospital for annual health check-up in Southern China by screening sera for PBC-specific autoantibodies.</p> <p>Methods</p> <p>AMA and ANA were screened in 8,126 adults (mean age 44 ± 15 years, 48% females) by indirect immunofluorenscence (IIF). Positive sera were tested by ELISA/immunoblotting for AMA-M2, anti-sp100 and anti-gp210. A diagnosis of PBC was re-assessed six months after the initial testing.</p> <p>Results</p> <p>Out of 8,126 individuals 35 were positive for AMA and 79 positive for ANA. Nineteen, 4, and 3 of the subjects positive for AMA and/or ANA showed reactivity for AMA-M2, anti-sp100 or gp210, respectively, further tested with ELISA/immunoblotting. Fourteen in the 39 individuals positive for AMA at IIF, AMA-M2, anti-gp210, or anti-sp100 had abnormal cholestatic liver functional indices. One definite and 3 probable PBC diagnosis could be made in 4 cases including 3 females and 1 male after half a year.</p> <p>Conclusions</p> <p>We found a point prevalence rate of PBC among Southern Chinese adults attending for yearly health check-up of 492 cases per million (95% CI, 128 to 1,093) and 1,558 cases per million (95% CI, 294 to 3,815) for women over 40, a finding similar to prevalence reported in other geographical areas.</p
    corecore