17 research outputs found

    Study of an intrinsically safe infrastructure for training and research on nuclear technologies

    Get PDF
    Within European Partitioning & Transmutation research programs, infrastructures specifically dedicated to the study of fundamental reactor physics and engineering parameters of future fast-neutron-based reactors are very important, being some of these features not available in present zero-power prototypes. This presentation will illustrate the conceptual design of an Accelerator-Driven System with high safety standards, but ample flexibility for measurements. The design assumes as base option a 70MeV, 0.75mA proton cyclotron, as the one which will be installed at the INFN National Laboratory in Legnaro, Italy and a Beryllium target, with Helium gas as core coolant. Safety is guaranteed by limiting the thermal power to 200 kW, with a neutron multiplication coefficient around 0.94, loading the core with fuel containing Uranium enriched at 20% inserted in a solid-lead diffuser. The small decay heat can be passively removed by thermal radiation from the vessel. Such a system could be used to study, among others, some specific aspects of neutron diffusion in lead, beam-core coupling, target cooling and could serve as a training facility

    Pilomyxoid Astrocytoma: A Review

    No full text
    Pilomyxoid astrocytoma (PMA) is a recently described type of brain tumor. PMA shares similar features with pilocytic astrocytoma (PA), the most common central nervous system (CNS) tumor in the pediatric population, yet displays subtle histologic differences. Previous studies have shown PMA to behave more aggressively than PA, with shorter progression-free and overall survival as well as a higher rate of recurrence and CNS dissemination. These findings suggest that PMA may be a unique and distinct neoplasm. This review summarizes the histologic, clinical, and radiographic characteristics of PMA. In addition, the current treatment options and research endeavors involving this disease are described. Increased recognition of PMA within the medical community has the potential to affect the treatment and prognosis of pediatric low-grade astrocytomas

    Sensory ataxia and cardiac hypertrophy caused by neurovascular oxidative stress in chemogenetic transgenic mouse lines

    No full text
    Abstract Oxidative stress is associated with cardiovascular and neurodegenerative diseases. Here we report studies of neurovascular oxidative stress in chemogenetic transgenic mouse lines expressing yeast D-amino acid oxidase (DAAO) in neurons and vascular endothelium. When these transgenic mice are fed D-amino acids, DAAO generates hydrogen peroxide in target tissues. DAAO-TGCdh5 transgenic mice express DAAO under control of the putatively endothelial-specific Cdh5 promoter. When we provide these mice with D-alanine, they rapidly develop sensory ataxia caused by oxidative stress and mitochondrial dysfunction in neurons within dorsal root ganglia and nodose ganglia innervating the heart. DAAO-TGCdh5 mice also develop cardiac hypertrophy after chronic chemogenetic oxidative stress. This combination of ataxia, mitochondrial dysfunction, and cardiac hypertrophy is similar to findings in patients with Friedreich’s ataxia. Our observations indicate that neurovascular oxidative stress is sufficient to cause sensory ataxia and cardiac hypertrophy. Studies of DAAO-TGCdh5 mice could provide mechanistic insights into Friedreich’s ataxia

    The Cryogenic Underground Observatory for Rare Events: Status and Prospects

    No full text
    The Cryogenic Underground Observatory for Rare Events (CUORE) is a large-scale double beta decay experiment utilizing cryogenic bolometers that is currently being commissioned at the Gran Sasso National Laboratory (LNGS) in Italy. Its primary focus is to search for the neutrino-less double beta decay of 130 Te with a projected sensitivity to Majorana neutrino masses near the inverted mass hierarchy region. The detector is composed of 988 5x5x5-cm 3 TeO 2 crystals of natural isotopic composition arranged in 19 towers of 52 crystals each, all housed in a common dilution refrigerator. A single CUORE-like tower, CUORE-0, was assembled and operated as a stand-alone detector for a period of approximately two years. In this report, the results from CUORE-0 and the current status and physics potential of CUORE are presented

    Study of an intrinsically safe infrastructure for training and research on nuclear technologies

    Get PDF
    Within European Partitioning & Transmutation research programs, infrastructures specifically dedicated to the study of fundamental reactor physics and engineering parameters of future fast-neutron-based reactors are very important, being some of these features not available in present zero-power prototypes. This presentation will illustrate the conceptual design of an Accelerator-Driven System with high safety standards, but ample flexibility for measurements. The design assumes as base option a 70MeV, 0.75mA proton cyclotron, as the one which will be installed at the INFN National Laboratory in Legnaro, Italy and a Beryllium target, with Helium gas as core coolant. Safety is guaranteed by limiting the thermal power to 200 kW, with a neutron multiplication coefficient around 0.94, loading the core with fuel containing Uranium enriched at 20% inserted in a solid-lead diffuser. The small decay heat can be passively removed by thermal radiation from the vessel. Such a system could be used to study, among others, some specific aspects of neutron diffusion in lead, beam-core coupling, target cooling and could serve as a training facility
    corecore