22 research outputs found

    Développement d'une nouvelle plateforme végétale de production de protéines recombinantes par l'utilisation des plantes carnivores du genre Nepenthes

    No full text
    METZ-SCD (574632105) / SudocNANCY1-Bib. numérique (543959902) / SudocNANCY2-Bibliotheque electronique (543959901) / SudocNANCY-INPL-Bib. électronique (545479901) / SudocSudocFranceF

    Nepenthes: State of the art of an inspiring plant for biotechnologists

    No full text
    International audiencePlant carnivory results from the adaptation of plants to their environment. The capture and digestion of preys, followed by their assimilation by the plant is a source of additional nutrients to overcome scarce nutrient in poor soils. Nepenthes are highly studied carnivorous plants and have developed a number of ecological traits which have attracted the attention of plant biologists. Multiple adaptive strategies developed by these plants make them a source of inspiration for many applications ranging from therapeutic treatments to biocontrol solution in agriculture. The outstanding tissue organization of the digestive pitcher can help to create new and original materials usable in everyday life. In this review article, we propose a state of the art of the latest studies carried out on these particular plants and we establish a list of potential tracks for their exploitation

    A Rapid and Efficient Method for Isolating High Quality DNA from Leaves of Carnivorous Plants from the Drosera Genus

    No full text
    International audienceDrosera rotundifolia, Drosera capensis, and Drosera regia are carnivorous plants of the sundew family, characterized by the presence of stalked and sticky glands on the upper leaf surface, to attract, trap, and digest insects. These plants contain exceptionally high amounts of polysaccharides, polyphenols, and other secondary metabolites that interfere with DNA isolation and subsequent enzymatic reactions such as PCR amplification. We present here a protocol for quick isolation of Drosera DNA with high yield and a high level of purity, by combining a borate extraction buffer with a commercial DNA extraction kit, and a proteinase K treatment during extraction. The yield of genomic DNA is from 13.36 μg/g of fresh weight to 35.29 μg/g depending of the species of Drosera, with a A₂₆₀/A₂₈₀ ratio of 1.43-1.92. Moreover, the procedure is quick and can be completed in 2.5 h

    Assessing Carnivorous Plants for the Production of Recombinant Proteins

    Get PDF
    The recovery of recombinant proteins from plant tissues is an expensive and time-consuming process involving plant harvesting, tissue extraction, and subsequent protein purification. The downstream process costs can represent up to 80% of the total cost of production. Secretion-based systems of carnivorous plants might help circumvent this problem. Drosera and Nepenthes can produce and excrete out of their tissues a digestive fluid containing up to 200 mg. L-1 of natural proteins. Based on the properties of these natural bioreactors, we have evaluated the possibility to use carnivorous plants for the production of recombinant proteins. In this context, we have set up original protocols of stable and transient genetic transformation for both Drosera and Nepenthes sp. The two major drawbacks concerning the proteases naturally present in the secretions and a polysaccharidic network composing the Drosera glue were overcome by modulating the pH of the plant secretions. At alkaline pH, digestive enzymes are inactive and the interactions between the polysaccharidic network and proteins in the case of Drosera are subdued allowing the release of the recombinant proteins. For D. capensis, a concentration of 25 μg of GFP/ml of secretion (2% of the total soluble proteins from the glue) was obtained for stable transformants. For N. alata, a concentration of 0.5 ng of GFP/ml secretions (0.5% of total soluble proteins from secretions) was reached, corresponding to 12 ng in one pitcher after 14 days for transiently transformed plants. This plant-based expression system shows the potentiality of biomimetic approaches leading to an original production of recombinant proteins, although the yields obtained here were low and did not allow to qualify these plants for an industrial platform project

    A simple SDS-Page protein pattern from pitcher secretions as a new tool to distinguish Nepenthes species (Nepenthaceae)

    No full text
    International audiencePremise of the study - Carnivorous plants have always fascinated scientists because these plants are able to attract, capture and digest animal prey using their remarkable traps that contain digestive secretions. Nepenthes is one of the largest genera of carnivorous plants, with 120 species described thus far. Despite an outstanding diversity of trap designs, many species are often confused with each other and remain difficult to classify because they resemble pitchers or of the occurrence of interspecific hybrids. Methods - Here, we propose a new method to easily distinguish Nepenthes species based on a 1D SDS PAGE protein pattern analysis of their pitcher secretions. Intraspecific comparisons were performed between specimens growing in different environmental conditions to ascertain the robustness of this method. Key results - Our results show that, at the juvenile stage and in the absence of prey in the pitcher, an examined species is characterized by a specific and stable profile, whatever the environmental conditions. Conclusions - The method we describe here can be used as a reliable tool to easily distinguish between Nepenthes species and to help with potential identification based on the species-specific protein pattern of their pitcher secretions, which is complementary to the monograph informatio
    corecore