6 research outputs found

    Depressive Symptoms Predict Change in Telomere Length and Mitochondrial DNA Copy Number Across Adolescence.

    No full text
    OBJECTIVE: Several studies have found associations between a diagnosis or symptoms of major depressive disorder and markers of cellular aging and dysfunction. These investigations, however, are predominantly cross-sectional and focus on adults. In the present study, we used a prospective longitudinal design to test the cross-sectional association between depressive symptoms in adolescents and telomere length (TL) as well as mitochondrial DNA copy number (mtDNA-cn). METHOD: A total of 121 adolescents (mean age = 11.38 years, SD = 1.03; 39% male adolescents and 61% female adolescents) were followed for approximately 2 years. At baseline and follow-up, participants provided saliva for DNA extraction, from which measures of TL and mtDNA-cn were obtained. Depressive symptoms were obtained via the Childrens Depression Inventory. RESULTS: There was no association between depressive symptoms and markers of cellular aging at baseline; however, depressive symptoms at baseline predicted higher rates of telomere erosion (β = -0.201, p = .016) and greater increases in mtDNA-cn (β = 0.190, p = .012) over the follow-up period. Markers of cellular aging at baseline did not predict subsequent changes in depressive symptoms. Furthermore, including the number of stressful life events did not alter these patterns of findings. CONCLUSION: These results indicate that depressive symptoms precede changes in cellular aging and dysfunction, rather than the reverse

    Decomposing complex links between the childhood environment and brain structure in school-aged youth

    No full text
    Childhood experiences play a profound role in conferring risk and resilience for brain and behavioral development. However, how different facets of the environment shape neurodevelopment remains largely unknown. Here we sought to decompose heterogeneous relationships between environmental factors and brain structure in 989 school-aged children from the Adolescent Brain Cognitive Development Study. We applied a cross-modal integration and clustering approach called ‘Similarity Network Fusion’, which combined two brain morphometrics (i.e., cortical thickness and myelin-surrogate markers), and key environmental factors (i.e., trauma exposure, neighborhood safety, school environment, and family environment) to identify homogeneous subtypes. Depending on the subtyping resolution, results identified two or five subgroups, each characterized by distinct brain structure–environment profiles. Notably, more supportive caregiving and school environments were associated with greater myelination, whereas less supportive caregiving, higher family conflict and psychopathology, and higher perceived neighborhood safety were observed with greater cortical thickness. These subtypes were highly reproducible and predicted externalizing symptoms and overall mental health problems. Our findings support the theory that distinct environmental exposures are differentially associated with alterations in structural neurodevelopment. Delineating more precise associations between risk factors, protective factors, and brain development may inform approaches to enhance risk identification and optimize interventions targeting specific experiences.11Nsciessciscopu
    corecore