300 research outputs found
INFANT AND YOUNG CHILD FEEDING IN EMERGENCIES IN NORTH CAROLINA: A REVIEW OF LITERATURE AND EMERGENCY GUIDANCE
Emergencies occur frequently in the United States, so it is important to have protocols in place to best prepare for and respond to these events. Infants and young children are especially vulnerable during emergencies as they have unique nutritional needs. This paper explores emergency management policies at the federal level and in North Carolina to assess how Infant and Young Child Feeding in Emergencies (IYCF-E) is addressed. A search was conducted to identify guidance documents, and they were reviewed for IYCF-E information. Twelve federal and six state documents were included. While some documents acknowledged that infants and young children are vulnerable, few contained detailed guidance on feeding practices. More IYCF-E policies and trainings are needed to protect this vulnerable population.Master of Public Healt
Problemi e prospettive del trattamento del libro antico nel Polo TSA
La descrizione delle edizioni antiche nel polo TSA di SBN è ripercorsa nelle sue tappe salienti, passando in rassegna i dati sul patrimonio antico descritto dalle biblioteche del Friuli Venezia Giulia che aderiscono al Polo. Viene proposta una carrellata sugli strumenti e i repertori più utili nella catalogazione di fondi antichi in regione, evidenziando i progressi compiuti nella descrizione bibliografica e degli esemplari, questi ultimi derivanti dal passaggio a Sebina Open Library e all’attivazione del portale Biblioest. Permangono criticità che attendono soluzioni condivise fra le biblioteche del Polo, fra cui sono rilevanti le scelte in merito alla catalogazione degli Incunaboli
Multifactor Dimensionality Reduction Reveals a Three-Locus Epistatic Interaction Associated with Susceptibility to Pulmonary Tuberculosis
Background:
Identifying high-order genetics associations with non-additive (i.e. epistatic) effects in population-based studies of common human diseases is a computational challenge. Multifactor dimensionality reduction (MDR) is a machine learning method that was designed specifically for this problem. The goal of the present study was to apply MDR to mining high-order epistatic interactions in a population-based genetic study of tuberculosis (TB). Results:
The study used a previously published data set consisting of 19 candidate single-nucleotide polymorphisms (SNPs) in 321 pulmonary TB cases and 347 healthy controls from Guniea-Bissau in Africa. The ReliefF algorithm was applied first to generate a smaller set of the five most informative SNPs. MDR with 10-fold cross-validation was then applied to look at all possible combinations of two, three, four and five SNPs. The MDR model with the best testing accuracy (TA) consisted of SNPs rs2305619, rs187084, and rs11465421 (TA = 0.588) in PTX3, TLR9 and DC-Sign, respectively. A general 1000-fold permutation test of the null hypothesis of no association confirmed the statistical significance of the model (p = 0.008). An additional 1000-fold permutation test designed specifically to test the linear null hypothesis that the association effects are only additive confirmed the presence of non-additive (i.e. nonlinear) or epistatic effects (p = 0.013). An independent information-gain measure corroborated these results with a third-order epistatic interaction that was stronger than any lower-order associations. Conclusions:
We have identified statistically significant evidence for a three-way epistatic interaction that is associated with susceptibility to TB. This interaction is stronger than any previously described one-way or two-way associations. This study highlights the importance of using machine learning methods that are designed to embrace, rather than ignore, the complexity of common diseases such as TB. We recommend future studies of the genetics of TB take into account the possibility that high-order epistatic interactions might play an important role in disease susceptibility
CD4 intragenic SNPs associate with HIV-2 plasma viral load and CD4 count in a community-based study from Guinea-Bissau, West Africa.
OBJECTIVES: The human genetics of HIV-2 infection and disease progression is understudied. Therefore, we studied the effect of variation in 2 genes that encode products critical to HIV pathogenesis and disease progression: CD4 and CD209. DESIGN: This cross-sectional study consisted of 143 HIV-2, 30 HIV-1 + HIV-2 and 29 HIV-1-infected subjects and 194 uninfected controls recruited from rural Guinea-Bissau. METHODS: We genotyped 14 CD4 and 4 CD209 single nucleotide polymorphisms (SNPs) that were tested for association with HIV infection, HIV-2 plasma viral load (high vs. low), and CD4 T-cell count (high vs. low). RESULTS: The most significant association was between a CD4 haplotype rs11575097-rs10849523 and high viral load [odds ratio (OR): = 2.37, 95% confidence interval (CI): 1.35 to 4.19, P = 0.001, corrected for multiple testing], suggesting increased genetic susceptibility to HIV-2 disease progression for individuals carrying the high-risk haplotype. Significant associations were also observed at a CD4 SNP (rs2255301) with HIV-2 infection (OR: = 2.36, 95% CI: 1.19 to 4.65, P = 0.01) and any HIV infection (OR: = 2.50, 95% CI: 1.34 to 4.69, P = 0.004). CONCLUSIONS: Our results support a role of CD4 polymorphisms in HIV-2 infection, in agreement with recent data showing that CD4 gene variants increase risk to HIV-1 in Kenyan female sex workers. These findings indicate at least some commonality in HIV-1 and HIV-2 susceptibility
Artificial Intelligence and Amikacin Exposures Predictive of Outcomes in Multidrug-Resistant Tuberculosis Patients
Aminoglycosides such as amikacin continue to be part of the backbone of treatment of multidrug-resistant tuberculosis (MDR- TB). We measured amikacin concentrations in 28 MDR-TB patients in Botswana receiving amikacin therapy together with oral levofloxacin, ethionamide, cycloserine, and pyrazinamide and calculated areas under the concentration-time curves from 0 to 24 h (AUC0 –24). The patients were followed monthly for sputum culture conversion based on liquid cultures. The median duration of amikacin therapy was 184 (range, 28 to 866) days, at a median dose of 17.30 (range 11.11 to 19.23) mg/kg. Only 11 (39%) pa- tients had sputum culture conversion during treatment; the rest failed. We utilized classification and regression tree analyses (CART) to examine all potential predictors of failure, including clinical and demographic features, comorbidities, and amikacin peak concentrations (Cmax), AUC0 –24, and trough concentrations. The primary node for failure had two competing variables, Cmax of \u3c67 mg/liter and AUC0 –24 of \u3c568.30 mg · h/L; weight of \u3e41 kg was a secondary node with a score of 35% relative to the primary node. The area under the receiver operating characteristic curve for the CART model was an R2 �� 0.90 on posttest. In patients weighing \u3e41 kg, sputum conversion was 3/3 (100%) in those with an amikacin Cmax of \u3e67 mg/liter versus 3/15 (20%) in those with a Cmax of \u3c67 mg/liter (relative risk [RR] �� 5.00; 95% confidence interval [CI], 1.82 to 13.76). In all patients who had both amikacin Cmax and AUC0 –24 below the threshold, 7/7 (100%) failed, compared to 7/15 (47%) of those who had these parameters above threshold (RR �� 2.14; 95% CI, 1.25 to 43.68). These amikacin dose-schedule patterns and exposures are virtually the same as those identified in the hollow-fiber system model
Evaluating the strength of genetic results: Risks and responsibilities
In this issue, we are publishing an Editorial Expression of Concern in connection with a recent article on the genetics of multiple sclerosis (MS). In brief, the authors used exome sequencing of families with multiple individuals diagnosed with MS to identify 21 missense or nonsense mutations in 12 genes, and they then suggest that these 12 genes provide a platform for additional research. Following publication, concerns were raised about the validity of some of the statements made in the manuscript, leading us to a series of discussions, both internally and with the authors. The purpose of this editorial is to describe the sequence of events, the rationale for our eventual publication of the Editorial Expression of Concern, and, in doing so, comment and engender discussion more broadly on the role of scientists as editors in what can sometimes be a grey area: the causal relationship between genetic and phenotypic variation
Common polymorphic variation in the genetically diverse African insulin gene and its association with size at birth.
The insulin variable number of tandem repeats (INS VNTR) has been variably associated with size at birth in non-African populations. Small size at birth is a major determinant of neonatal mortality, so the INS VNTR may influence survival. We tested the hypothesis, therefore, that genetic variation around the INS VNTR in a rural Gambian population, who experience seasonal variation in nutrition and subsequently birth weight, may be associated with foetal and early growth. Six polymorphisms flanking the INS VNTR were genotyped in over 2,500 people. Significant associations were detected between the maternally inherited SNP 27 (rs689) allele and birth length [effect size 17.5 (5.2-29.8) mm; P = 0.004; n = 361]. Significant associations were also found between the maternally inherited African-specific SNP 28 (rs5506) allele and post-natal weight gain [effect size 0.19 (0.05-0.32) z score points/year; P = 0.005; n = 728). These results suggest that in the Gambian population studied there are associations between polymorphic variation in the genetically diverse INS gene and foetal and early growth characteristics, which contribute to overall polygenic associations with these traits
Natural variation in immune responses to neonatal mycobacterium bovis bacillus calmette-guerin (BCG) vaccination in a cohort of Gambian infants
Background There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN- responses to BCG in this age group are poorly described. Characterisation of IFN- responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy. Methodology/Principal Findings 236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89-98% depending on the antigen) made IFN- responses and there was significant correlation between IFN- responses to the different mycobacterial antigens (Spearman’s coefficient ranged from 0.340 to 0.675, p=10-6-10-22). IL-13 and IL-5 responses were generally low and there were more non-responders (33-75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens Conclusions/Significance Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN- responses
The Genetic Structure and History of Africans and African Americans.
Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (approximately 71%), European (approximately 13%), and other African (approximately 8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies
- …