6 research outputs found

    Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pattern-forming bacterium <it>Paenibacillus vortex </it>is notable for its advanced social behavior, which is reflected in development of colonies with highly intricate architectures. Prior to this study, only two other <it>Paenibacillus </it>species (<it>Paenibacillus </it>sp. JDR-2 and <it>Paenibacillus larvae</it>) have been sequenced. However, no genomic data is available on the <it>Paenibacillus </it>species with pattern-forming and complex social motility. Here we report the <it>de novo </it>genome sequence of this Gram-positive, soil-dwelling, sporulating bacterium.</p> <p>Results</p> <p>The complete <it>P. vortex </it>genome was sequenced by a hybrid approach using 454 Life Sciences and Illumina, achieving a total of 289× coverage, with 99.8% sequence identity between the two methods. The sequencing results were validated using a custom designed Agilent microarray expression chip which represented the coding and the non-coding regions. Analysis of the <it>P. vortex </it>genome revealed 6,437 open reading frames (ORFs) and 73 non-coding RNA genes. Comparative genomic analysis with 500 complete bacterial genomes revealed exceptionally high number of two-component system (TCS) genes, transcription factors (TFs), transport and defense related genes. Additionally, we have identified genes involved in the production of antimicrobial compounds and extracellular degrading enzymes.</p> <p>Conclusions</p> <p>These findings suggest that <it>P. vortex </it>has advanced faculties to perceive and react to a wide range of signaling molecules and environmental conditions, which could be associated with its ability to reconfigure and replicate complex colony architectures. Additionally, <it>P. vortex </it>is likely to serve as a rich source of genes important for agricultural, medical and industrial applications and it has the potential to advance the study of social microbiology within Gram-positive bacteria.</p

    Peripheral blood cellular dynamics of rheumatoid arthritis treatment informs about efficacy of response to disease modifying drugs

    No full text
    Abstract Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic inflammation and is mediated by multiple immune cell types. In this work, we aimed to determine the relevance of changes in cell proportions in peripheral blood mononuclear cells (PBMCs) during the development of disease and following treatment. Samples from healthy blood donors, newly diagnosed RA patients, and established RA patients that had an inadequate response to MTX and were about to start tumor necrosis factor inhibitors (TNFi) treatment were collected before and after 3 months of treatment. We used in parallel a computational deconvolution approach based on RNA expression and flow cytometry to determine the relative cell-type frequencies. Cell-type frequencies from deconvolution of gene expression indicate that monocytes (both classical and non-classical) and CD4+ cells (Th1 and Th2) were increased in RA patients compared to controls, while NK cells and B cells (naïve and mature) were significantly decreased in RA patients. Treatment with MTX caused a decrease in B cells (memory and plasma cell), and a decrease in CD4 Th cells (Th1 and Th17), while treatment with TNFi resulted in a significant increase in the population of B cells. Characterization of the RNA expression patterns found that most of the differentially expressed genes in RA subjects after treatment can be explained by changes in cell frequencies (98% and 74% respectively for MTX and TNFi)

    Gut microbiome structure and metabolic activity in inflammatory bowel disease

    Get PDF
    The inflammatory bowel diseases (IBDs), which include Crohn's disease (CD) and ulcerative colitis (UC), are multifactorial chronic conditions of the gastrointestinal tract. While IBD has been associated with dramatic changes in the gut microbiota, changes in the gut metabolome-the molecular interface between host and microbiota-are less well understood. To address this gap, we performed untargeted metabolomic and shotgun metagenomic profiling of cross-sectional stool samples from discovery (n = 155) and validation (n = 65) cohorts of CD, UC and non-IBD control patients. Metabolomic and metagenomic profiles were broadly correlated with faecal calprotectin levels (a measure of gut inflammation). Across >8,000 measured metabolite features, we identified chemicals and chemical classes that were differentially abundant in IBD, including enrichments for sphingolipids and bile acids, and depletions for triacylglycerols and tetrapyrroles. While > 50% of differentially abundant metabolite features were uncharacterized, many could be assigned putative roles through metabolomic 'guilt by association' (covariation with known metabolites). Differentially abundant species and functions from the metagenomic profiles reflected adaptation to oxidative stress in the IBD gut, and were individually consistent with previous findings. Integrating these data, however, we identified 122 robust associations between differentially abundant species and well-characterized differentially abundant metabolites, indicating possible mechanistic relationships that are perturbed in IBD. Finally, we found that metabolome- and metagenome-based classifiers of IBD status were highly accurate and, like the vast majority of individual trends, generalized well to the independent validation cohort. Our findings thus provide an improved understanding of perturbations of the microbiome-metabolome interface in IBD, including identification of many potential diagnostic and therapeutic targets
    corecore