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Inflammatory bowel disease (IBD) is a chronic inflammatory 
condition of the gastrointestinal tract that results from altered 
interactions between gut microbes and the intestinal immune sys-

tem1,2. There are two main IBD subtypes, ulcerative colitis (UC) and 
Crohn’s disease (CD), which localize in the large and small intes-
tines, respectively, and are characterized by unique microbial signa-
tures3. Previous studies have shown major shifts in the gut microbial 
composition of patients with IBD2,4–8. Likewise, microbial compo-
sition can shape the environment in the colon as metabolites that 
microbes produce can be involved in signalling, immune system 
modulation or have antibiotic activity9–11. However, it is less clear 
how specific microbes and the small molecules they modulate may 
interact to cause, sustain, mitigate or predict inflammatory condi-
tions such as IBD.

Broadly, gut metabolite profiles are jointly derived from diet, 
modified human metabolites and microbially derived com-
pounds that shape the microbiota–host interactions9. For example,  

short-chain fatty acids (SCFAs) such as butyrate, acetate and pro-
pionate are produced by gut bacteria when they break down dietary 
fibre. SCFAs can affect host cells by modulating histone deacetylase 
inhibitory activity, gene expression, cell proliferation and immune 
response7,12. In addition, butyrate can protect against colitis by regu-
lating Treg cell production and enhancing the antibacterial activity of 
macrophages13,14. In stool from patients with IBD there is a decrease 
in butyrate, an SCFA that is important in modulating the immune 
system along with a decrease in butyrate-producing bacteria2,15.

Commensal microbes can also alter pools of available metabolites 
thereby modifying host-generated signalling molecules. Untargeted 
serum metabolomics of germ-free versus conventional mice showed 
that a large number of serum metabolites arise due to commensal 
microbes16. For example, tryptophan metabolism is largely affected 
by the presence of gut bacteria, since microbial tryptophan decar-
boxylases (among other enzymes) convert tryptophan from the  
diet into tryptamine and other molecules. Microbially derived  
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tryptophan metabolites alter host physiology not only by decreas-
ing the available tryptophan, which can in turn perturb serotonin 
production, and by extension, behaviour17, but also by producing 
indole derivatives that activate the aryl hydrocarbon receptor18. 
There is a decrease in tryptophan metabolism genes in microbiome 
samples from patients with CD4. A mouse study recently found that 
animals lacking one of the IBD susceptibility genes, CARD9, had 
altered microbial metabolism of tryptophan and were more suscep-
tible to colitis19.

A number of previous studies have identified differences in 
faecal metabolites in IBD20–25. However, these studies have tended 
to rely on small cohorts or 16S ribosomal RNA amplicon-based 
profiles of the associated IBD microbiota (that is, lacking shotgun 
metagenomic information). In a study of healthy individuals, untar-
geted faecal metabolomics correlated better with 16S-based micro-
biome composition than targeted metabolomics26. IBD-associated 
taxa were also highly correlated with metabotype in a study of 
inactive paediatric IBD. In the same study, healthy first-degree rela-
tives displayed a similar microbiome and metabotype as relatives 
with inactive disease25. Both CD and UC gut microbiomes exhibit 
general decreases in taxonomic diversity relative to healthy gut 
microbiomes, along with phylum-level decreases in Firmicutes and 
increases in Proteobacteria3,25,27. In CD specifically, proportions of 
the Clostridia class are altered: the Roseburia and Faecalibacterium 
genera of the Lachnospiraceae and Ruminococcaceae families are 
decreased, whereas Ruminococcus gnavus increases5,28,29. Together, 
these findings suggest that yet-to-be characterized molecules in the 
gut metabolome, linked to inflammation and ultimately IBD, may 
be largely microbially derived or modified.

In this work, we took an unbiased approach to identify gut 
metabolites, microbial species and microbial enzymes that were dif-
ferentially abundant in IBD relative to non-IBD controls. To that 
end, we performed untargeted liquid chromatography–mass spec-
trometry (LC–MS) metabolomic profiling and shotgun metage-
nomic sequencing of stool samples from a 155-member discovery 
cohort and a 65-member validation cohort, each containing a cross-
sectional sampling of UC, CD and control patients. While metage-
nomic findings were largely in agreement with previous studies, 
metabolomic profiles revealed > 2,700 differentially abundant 
metabolites in IBD, including 224 that were significantly elevated 
in both UC and CD. IBD-elevated metabolites were enriched for 

sphingolipids and bile acids (among other chemical classes), as well 
as many uncharacterized metabolites of potential microbial origin. 
Indeed, many differentially abundant metabolites participated in 
robust associations with differentially abundant microbial species 
and enzymes, which is suggestive of biological mechanisms relat-
ing their abundances. Finally, the vast majority of IBD associations 
from the discovery cohort were replicated in the independent vali-
dation cohort, thus making our findings a useful resource for the 
study of microbiome and metabolic perturbations in IBD.

Results
To characterize the gut metabolic profile and microbiome compo-
sition in IBD, we collected and analysed stool samples from a cross-
sectional cohort of individuals enroled in PRISM (the Prospective 
Registry in IBD Study at MGH). This cohort included 155 patients: 
68 with CD, 53 with UC and 34 non-IBD controls (Fig. 1a). Each 
stool sample was subjected to metagenomic sequencing followed 
by profiling of microbial community taxonomic composition and 
functional potential. In addition, each sample was analysed by 
four LC–MS methods measuring polar metabolites, lipids, free 
fatty acids and bile acids, respectively. LC–MS metabolomic pro-
filing was carried out using sensitive, high-resolution mass spec-
trometers in non-targeted modes, thus capturing large numbers of 
known and uncharacterized metabolites, including those of poten-
tial microbial origin.

A total of 3,829 metabolite features (43% of total) were assigned 
to putative molecular classes based on comparisons with the 
Human Metabolome Database (HMDB)30; 466 features (represent-
ing 346 unique compounds) were annotated as standards through 
comparison with reference data generated from an in-house com-
pound library (see Supplementary Datasets 1 and 2). Shotgun 
metagenomic and metabolomic data were then analysed (1) to 
identify IBD- and disease subtype-specific changes in individu-
als’ microbial and metabolic profiles, (2) to describe associations 
between microbial and metabolite features and (3) to assess the 
power of these features to classify IBD status and subtype across 
populations. Relationships discovered in the PRISM cohort were 
validated against an independent cohort of 20 CD patients, 23 UC 
patients and 22 population controls from the Netherlands. These 
analyses are expanded in the following sections, with additional 
technical detail provided in the Methods.
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Fig. 1 | IBD is associated with broad changes in the gut multi-omic profiles of individuals. a, We collected and profiled stool metagenomic and 
metabolomic data from two IBD cohorts: a 155-member discovery cohort (PRISM) and a 65-member validation cohort (LifeLines DEEP and NLIBD). b, 
Principal coordinates analysis (PCoA) of PRISM cohort individuals based on gut metabolomic profiles (Bray–Curtis distance). c, The same individuals 
ordinated on Bray–Curtis distances between gut metagenomic species profiles. d,e, Patient faecal calprotectin levels (µ g g−1) plotted against the first PCoA 
axes from panels b and c, respectively. Note that faecal calprotectin measurements were not available for all individuals.
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Broad metabolic shifts in IBD correlate with host inflamma-
tion. The major patterns of variation in the 155 PRISM patients’ 
measurements of > 8,000 metabolite features largely separated 
non-IBD controls versus CD patients, which is indicative of broad 
metabolic differences between these two phenotypes (Fig. 1b). Such 
differences could result from a combination of sources, including 
the effects of disease activity in host tissues, the activity of an IBD-
altered microbiome and differences in patient diet and medication 
use. The metabolic profiles of UC patients were more broadly dis-
tributed, with roughly half resembling the profiles of non-IBD con-
trols and the remainder more similar to the metabolomes of CD 
patients (Supplementary Fig. 1). Similar patterns of variation among 
disease phenotypes were apparent in the microbial taxonomic 
profiles from the patients’ corresponding metagenomes (Fig. 1c;  
see also Supplementary Fig. 2 and Supplementary Dataset 4). 
Indeed, the first axes of ordination for the two datasets were well 
correlated (Spearman’s r =  0.664, two-tailed P <  10−20), consistent 
with strong coupling of gut metabolic profile, microbial community 
composition and disease status.

We hypothesized that broad variation in metabolic profile across 
individuals, especially within UC patients, might be explained in 
part by individuals’ levels of active inflammation. We evaluated this 
by comparing the first axis of metabolic variation with individuals’ 
levels of faecal calprotectin, a biomarker for severity of inflammation 
in IBD31. Across 93 individuals with faecal calprotectin measure-
ments, the first axis of metabolic variation correlated in a reasonably 
strong and highly statistically significant manner with faecal calpro-
tectin (Spearman’s r =  0.486, two-tailed P <  10−6; Fig. 1d). This cor-
relation was driven in part by the tendency of control individuals to 
have very low faecal calprotectin levels (mean =  35 µ g g−1) and CD 

patients having very high levels (mean =  130 µ g g−1). However, the 
correlation remained strong and significant when evaluated on UC 
patients only (n =  25, r =  0.565, two-tailed P =  0.003). We observed 
a similar trend between faecal calprotectin measurements and the 
first axis of metagenomic variation (Fig. 1e), leading us to conclude 
that (1) our UC patients vary from control-like levels of inflamma-
tion to more active inflammation, and (2) that this variation may 
contribute to the more heterogeneous metabolic and metagenomic 
profiles of UC patients.

The first axes of metabolomic and taxonomic variation were also 
significantly associated with Shannon diversity (Supplementary 
Fig. 3). Consistent with previous findings, more inflamed, IBD-
like samples (towards the right in Fig. 1c) tended to have mark-
edly lower Shannon diversity (Spearman’s r =  − 0.572, two-tailed 
P <  10−14, n =  155). A similar, albeit weaker, trend was observed 
for metabolite profiles (Spearman’s r =  − 0.321, P <  10−4, n =  155), 
which exhibited less overall variation in within-sample diversity. 
Notably, these mutual associations with diversity were not sufficient 
to explain the strong coupling between the first axes of metabolomic 
and taxonomic variation, which remained significant after subtract-
ing diversity effects using linear regression (residual correlation 
analysis, Spearman’s r =  0.364, P <  10−5, n =  155; see Methods).

The 68 CD patients in the PRISM (discovery) cohort were sub-
classified according to disease localization: L1 (ileal, n =  14); L2 
(colonic, n =  22); L3 (ileocolonic, n =  29); L1 +  L4 (ileal +  upper 
gastrointestinal tract, n =  1); and unknown (n =  2). Compared to 
the strong separations we observed between CD and non-IBD indi-
viduals in the metabolomic and metagenomic data, we observed 
little to no stratification by disease localization among CD patients 
(Supplementary Fig. 4). More formally, overall diagnosis (CD/UC/
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non-IBD) explained statistically significant fractions of the distance 
variation among individuals’ metabolomic and metagenomic pro-
files (permutational analysis of variance, P <  10−4; see Methods), 
while disease localization did not have a significant effect among 
CD patients (P =  0.22 and P =  0.35), possibly due to the established 
nature of IBD within the PRISM cohort. As a consequence of this 
finding, we treated CD as a single diagnosis in subsequent analyses.

Metabolite enrichments in IBD versus control phenotypes. To 
dissect metabolic changes in IBD at greater resolution, we applied a 
multivariable linear model to each metabolic feature to test associa-
tion with IBD phenotype while controlling for other covariates (age 
and medication use; see Methods and Supplementary Dataset 3). 
Nominal P values for UC- and CD-specific effects were subjected 
to multiple hypothesis testing correction using the Benjamini-
Hochberg32 method with a false discovery rate (FDR) threshold of 
0.05. Despite this strict filtering procedure, 2,729 metabolite features 
(31%) were significantly differentially abundant in IBD, including 
200 matched against 151 unique standards. Out of all differentially 
abundant metabolites, the majority (1,931; 71%) were significantly 
depleted in IBD (CD or UC) relative to non-IBD controls; 224 
(8%) were significantly elevated in both CD and UC; 505 (19%) 
were specifically elevated in CD; and only 69 (3%) were specifically 
elevated in UC (a possible consequence of the more heterogeneous 
metabolic profiles of UC patients). The large number of individu-
ally differentially abundant metabolites is consistent with the broad 
changes in metabolite profiles of IBD patients described earlier in 
the context of overview ordination (see Fig. 1b).

We performed enrichment analysis (Wilcoxon signed-rank tests; 
see Methods) to identify broad classes of compounds that were sig-
nificantly over- or under-abundant in IBD phenotypes (ranking 
metabolite features by their CD- and UC-specific effect sizes). We 
defined metabolite classes based on HMDB annotations and focused 
on the 97 metabolite classes with at least 10 putative members in 
our dataset. Across these classes, we searched for enrichments in 
IBD or non-IBD controls that were statistically significant after cor-
rection for multiple hypothesis testing (Benjamini–Hochberg FDR 
q <  0.05). Eight of the 97 molecular classes were significantly over-
abundant in CD, with the strongest effects observed among sphin-
golipids, carboximidic acids and bile acids (Fig. 2a). Seven of these 
classes were additionally significantly overabundant in UC, while 
phenylacetamides were elevated, but not to a statistically significant 
degree (Fig. 2b). No molecular classes were specifically overabun-
dant in UC.

IBD-enriched bile acids included cholate (q =  0.003) and che-
nodeoxycholate (q =  0.0002; Fig. 2c). In the healthy gut, these pri-
mary bile acids aid in the digestion of lipids and are deconjugated 
by microbes to secondary bile acids. We observed complementary 
depletions for the secondary bile acids sodium lithocholate and 
deoxycholate in CD, but the changes did not meet our threshold 
for FDR significance (q =  0.06 and 0.13, respectively). The relative 
overabundance of primary bile acids in the guts of IBD patients is 
consistent with disruption of bile acid transformation activities in 
the IBD microbiome33. Sphingolipids, another of the overabundant 
classes in IBD, play multiple roles in the healthy gut, including (1) 
as structural components of intestinal cell membranes and (2) as 
signalling molecules involved in cell fate decisions34. In addition to 
their presence in the membranes of human cells, sphingolipids are 
prevalent in the membranes of Bacteroidetes, and these microbially 
derived sphingolipids modulate the invariant natural T cell popu-
lation35. Previous work suggested that sphingolipid metabolism 
may be disrupted in IBD, resulting in an accumulation of specific 
sphingolipid compounds that promote an inflammatory state36–38. 
Two of these compounds, ceramide and sphingomyelin (Fig. 2d), 
were significantly overabundant in both CD and UC (q <  0.02 in 
all comparisons).

Many more molecular classes were significantly depleted in 
CD and UC relative to controls (see Fig. 2a,b). Triterpenoids and 
long-chain fatty acids (LCFAs; including 2-hydroxymyristic acid, 
Fig. 2e) were the most numerous depleted classes (total n =  135 
and 111, respectively), while phenylbenzodioxanes and cholester-
ols (including cholestenone) were the most consistently depleted 
classes. (The majority of their members were individually signifi-
cantly depleted in CD.) Phenylbenzodioxanes are primarily derived 
from fruits, which reinforces the notion that some of the detected 
metabolic changes are a result of variation in individuals’ diets. 
Triacylglycerols (TAGs), including C54:6 TAG (Fig. 2f), were addi-
tionally enriched in controls relative to CD and UC patients. This 
change, coupled with the enrichments for LCFAs and cholesterols, 
is consistent with previously suggested perturbations of fatty acid 
metabolism in IBD39.

While their molecular classes were not generally differentially 
enriched in IBD, other notable differentially abundant metabolites 
included lactate (up in IBD; Fig. 2g) and pantothenate (down in 
IBD; Fig. 2h). Lactate has been previously reported as elevated in 
CD and UC patients40, and is notable for being produced by mem-
bers of the IBD gut microbiome, including lactobacilli, entero-
cocci and pediococci. Pantothenate (vitamin B5) is a precursor 
for coenzyme A, which is notable for being involved in fatty acid 
metabolism. Moreover, pantothenate is produced by the healthy 
gut microbiota; so (like lactate), its differential abundance in IBD 
patients may indicate a perturbation of microbe–metabolite rela-
tionships in the gut, a topic we explore in detail in a later section. 
While not statistically significant in this cohort, the SCFAs butyrate 
and propionate were decreased in both UC and CD patients relative 
to controls (Supplementary Dataset 3).

Modules of chemically related compounds are perturbed in IBD. 
To further explore biological patterns underlying the 2,729 differ-
entially abundant metabolites, we clustered the differentially abun-
dant metabolites based on the similarity of their residuals from the 
linear modelling approach described earlier. Metabolites co-clus-
tered by this method will therefore tend to covary independently 
of their relationship with IBD phenotype, age and medication use. 
A total of 1,403 such clusters were identified with mean intracluster 
Spearman’s r >  0.7. (Note that these unsupervised clusters, listed 
in Supplementary Dataset 1, are distinct from the HMBD-defined 
molecular classes used during enrichment analysis.) Each cluster 
was assigned a representative metabolite: the cluster centroid or the 
standard metabolite closest to the centroid (where applicable). The 
50 largest clusters accounted for 780 differentially abundant features 
(29% of total), consistent with a smaller number of biological sig-
nals explaining many differentially abundant metabolites.

Clusters of covarying metabolites can arise by a variety of mech-
anisms, including: (1) chemical modification of a common parent 
metabolite; (2) metabolites interrelated by a biochemical pathway; 
(3) metabolites co-produced by a specific microbe; and (4) metabo-
lites co-contributed from a specific dietary source. Biological signals 
suggested by metabolite covariation, especially those arising from 
interconversion of metabolites, can be used to transfer knowledge 
from annotated metabolites to their unannotated partners. This 
‘guilt-by-association’ principle also arises in gene co-expression 
data, where it has been applied to identify modules of functionally 
related genes41 and predict gene function assignments42. Following 
this logic, we found that co-clustered metabolites were 2.7×  more 
similar in retention time, 3.0×  more similar in mass/charge ratio 
and 15×  more likely to belong to the same chemical class relative to 
random metabolite pairs (see Methods). Clusters are thus enriched 
for similar physico-chemical properties, and cluster co-membership 
may be predictive of such properties.

The largest metabolite cluster enriched in IBD (and the sec-
ond largest overall) contained 39 metabolite features, all of them 
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enriched in CD, with one additionally enriched in UC (Fig. 3a). 
This cluster contained 12 putative bile acids, including matches to 
cholate, chenodeoxycholate and their structural variants. This clus-
ter also contained 17 unlabelled metabolites, which may also be 
related to bile acid metabolism via guilt-by-association logic. The 
largest cluster contained 62 metabolite features: all of them elevated 
among controls (Fig. 3b). Eleven features in this cluster were anno-
tated as putative tetrapyrroles, but the cluster contained no vali-
dated standard metabolites, thus making it a promising target for 
further characterization. The previously described control-like and 
CD-like subdivisions of the UC population were also readily appar-
ent in these individual clusters.

Other clusters of interest included the third largest cluster (33 
members), which was consistently elevated among non-IBD con-
trols and contained a variety of TAG metabolites (Supplementary 
Fig. 5). Cluster 13 (18 members) was uniquely elevated in CD 
patients and enriched for organonitrogen compounds, includ-
ing the standards linoleoyl ethanolamide, palmitoylethanolamide 
and N-oleoylethanolamine (Supplementary Fig. 6). Clusters 23 
and 25 were elevated in CD and UC patients and contained a vari-
ety of LCFAs, including the standards arachidonic acid, adrenic 
acid, docosapentaenoic acid (DPA) and eicosatrienoic acid (ETA) 
(Supplementary Fig. 7). Notably, the 99 clusters (7%) containing 
standards were more the exception than the rule; most clusters 
remain largely uncharacterized, allowing the potential for many pre-
viously undescribed, IBD-associated metabolites of microbial origin.

Species-level changes in IBD microbiome community compo-
sition. As introduced earlier, taxonomic profiling of individuals’ 
gut microbiomes showed that the largest source of variation corre-
sponded with the separation of non-IBD controls versus CD pheno-
types, while UC patients were more heterogeneous (see Fig. 1b). To 
further dissect this trend, we applied the linear modelling approach 
introduced earlier to the abundances of 195 species-level clades 

(from 67 genera) that were present in at least five samples at 0.1% 
relative abundance (Supplementary Dataset 5). A total of 50 species 
were differentially abundant in one or more phenotypes, of which 
35 were elevated in controls relative to IBD (Supplementary Fig. 2).  
Roseburia hominis, Dorea formicigenerans and Ruminococcus obeum 
were among the species exhibiting the strongest enrichments 
in non-IBD controls. The fact that these and many other species 
were significantly depleted in IBD relative to controls is consistent 
with the general trend towards loss of species diversity in the IBD 
microbiome2,3,27 and with specific previous taxonomic enrichment 
studies4,5,43,44. Unclassified Roseburia species were significantly ele-
vated in both CD and UC patients, while Bifidobacterium breve and 
Clostridium symbiosum were uniquely differentially abundant and 
enriched in UC. Twelve species were uniquely differentially abun-
dant and enriched in CD, including R. gnavus, Escherichia coli and 
Clostridium clostridioforme. Many of these species-specific enrich-
ments and depletions were in line with previous studies as cited and 
discussed in this article.

Putative mechanistic associations between IBD-linked microbes 
and metabolites. The multi-omic nature of this dataset enables 
the identification of microbial features and metabolites that (1) are 
mutually differentially abundant in IBD and (2) covary indepen-
dently of their mutual covariation with disease. Such relationships 
are consistent with a mechanism relating the abundance of the spe-
cies and metabolite that is then perturbed during IBD pathogen-
esis. For example, a positive association between a metabolite and 
species could indicate that the metabolite promotes the growth of 
that species, or that the species produces that metabolite. To identify 
such relationships, we performed large-scale association discovery 
between differentially abundant metabolites and species, focus-
ing on representative differentially abundant metabolites and spe-
cies from the clustering approach described earlier (notably, most  
species clustered alone by this approach). More importantly, we 
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performed association discovery on metabolite and species residual 
abundances from the linear modelling approach described ear-
lier, which will tend to de-emphasize associations driven purely 
by mutual association with disease status. This revealed a total of 
15,679 FDR-significant (q <  0.05) associations between representa-
tive differentially abundant metabolites and species. Among these 
was a positive association between lactic acid and Pediococcus aci-
dilactici (Spearman’s r =  0.23), one of the expected microbe–metab-
olite relationships alluded to previously (see Fig. 2g). To further 
enrich for putatively mechanistic relationships that are perturbed 
in disease, we specifically focused on the subset of associations 
that were nominally significant (P <  0.05) and in the same direc-
tion when considering raw metabolite and species abundances from 
non-IBD controls only (we refer to these associations as ‘confirmed 
in controls’).

This filtered dataset encompassed 2,279 associations between 
differentially abundant metabolites and species (Supplementary 
Fig. 8), including 122 associations involving standards and charac-
terized species (Fig. 4a). Associations covered 901 metabolite clus-
ters representing 1,878 differentially abundant metabolites; 46 of 
50 differentially abundant species were represented in at least one 
association. However, of the large number of possible associations 
between these metabolites and species, only 6% were statistically 
significant and confirmed in controls. This implies that, although 

many metabolites are associated with one or more species, they tend 
not to associate mechanistically with most species (and vice versa). 
The largest group of associations were positive associations between 
metabolites and species that were both elevated in controls (1,398 
associations; 61% of all significant associations). These associations 
were representative of a general pattern of ‘concordance’ with dis-
ease, resulting, for example, when a species produces a protective 
metabolite. Discordant associations, for example, negative associa-
tions between metabolites and species that both increased in dis-
ease, accounted for only ~2% of total associations. In these cases, 
while the species and metabolite may be mechanistically linked, the 
mechanism does not appear to directly aggravate IBD pathogenesis.

The CD-associated compounds ETA and DPA were involved 
in negative associations with control-associated species and posi-
tive associations with IBD-associated species. ETA and DPA are 
polyunsaturated LCFAs and are examples of omega-3 and omega-6 
fatty acids, respectively. ETA and DPA are important constitu-
ents of eukaryotic cell membranes; their elevation in the IBD-
afflicted gut may be explained by higher rates of host cell death 
or turnover, or reduced absorption from diet. In addition to roles 
in immune and inflammatory signalling, polyunsaturated LCFAs 
possess bactericidal activity by virtue of their hydrophobic nature 
and potential to disrupt bacterial cell membranes45. This activity 
is particularly consistent with the negative correlations involving 
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Fig. 4 | Potentially mechanistic associations between IBD-linked microbes and metabolites. a, Covariation between microbes and small molecules in 
IBD, specifically those linking FDR-significant, confirmed-in-controls metagenomic species and metabolites matched against standards (Spearman’s 
rank correlation with two-tailed nominal P values). When multiple metabolomic features matched the same standard, the feature with the highest 
mean absolute correlation was selected for plotting. Metabolites marked with an asterisk indicate a match to a standard with isomeric forms that could 
not be differentiated. The standard L-1, 2, 3, 4-tetrahydro-beta-carboline-3-carboxylic acid is listed as ‘cyclomethyltryptophan’. ADMA, asymmetric 
dimethylarginine; LPC, lysophosphatidylcholin; MAG, monoacylglycerol. b–d, Examples of individual correlations across 68 CD, 53 UC and 34 non-IBD 
controls (see text). The metabolites and species in these examples are coloured in panel a. Values plotted are raw measurements (not residuals) normalized 
to ppm units and then log10-transformed. Values <  1 ppm (including 0s) were set to 1 ppm for plotting; corresponding points are shown without fill and 
jittered; all other points have solid fill.
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ETA (for example, with Eubacterium ventriosum; Fig. 4b), several 
of which had a ‘mutually exclusive’ character (that is, when an 
ETA was present, the corresponding species tended to be absent, 
and vice versa). Conversely, DPA associated positively with IBD-
associated species, most notably R. gnavus (Fig. 4c). This suggests 
that DPA encourages the growth of these species, possibly through 
disrupting the growth of health-associated species.

Caprylic acid, also known as octanoic acid, is a medium-chain 
fatty acid (MCFA) with antibacterial and antiviral properties46. 
Caprylic acid was enriched in non-IBD controls in our dataset, 
consistent with previously observed patterns of MCFA depletion in 
IBD22. Like SCFAs, MCFAs may occur in the gut as a breakdown 
product from anaerobic fermentation of fibre, although dietary con-
tributions are perhaps more abundant. Consistent with this idea, 
caprylic acid was (weakly) positively correlated with a number of 
health-associated gut anaerobes, including Alistipes shahii, Alistipes 
putredinis and Alistipes finegoldii. On the other hand, caprylic 
acid was significantly negatively associated with the abundance of  
R. gnavus (Fig. 4d). Such a negative relationship would be con-
sistent with possible uptake and metabolism of caprylic acid by  
R. gnavus (in which case, as the species abundance increases, more 
caprylic acid is used up). Alternatively, and more consistent with its 

aforementioned antibacterial properties, caprylic acid may have an 
inhibitory effect on the growth of R. gnavus.

To experimentally validate the potential for IBD-associated 
metabolites to exert growth effects on an IBD-associated species, 
we cultured R. gnavus in the presence of eight molecules with 
which it was observed to associate in the preceding analysis (see 
Methods). Among four predicted negative associations, caprylic 
acid indeed inhibited the growth of R. gnavus at high concentra-
tions, as hypothesized above (Supplementary Fig. 9). Among four 
predicted positive associations, taurine and DPA were confirmed 
to enhance growth, while phytosphingosine exhibited a paradoxi-
cal inhibitory effect. Given the many factors that could impact the 
results of growth assays, for example, strain specificity and molecu-
lar concentrations, and the potential for mechanisms of associa-
tion beyond direct effects on growth, for example, production as 
by-product, these results provide promising initial support for the 
usefulness of our multi-omic association framework in focusing 
downstream experiments.

IBD-associated changes in microbial function and their meta-
bolic associations. To understand the functional consequences  
of microbial community changes in IBD, we first functionally  
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profiled gene families in all metagenomes using HUMAnN2, and 
then summed their abundances according to Enzyme Commission 
(EC) number annotations (see Methods and Supplementary Dataset 
6). We applied the previously described linear modelling approach 
to this enzyme abundance data, revealing 568 enzymes that were 
differentially abundant (FDR-corrected q <  0.05) in CD, UC or both 
(Supplementary Fig. 10 and Supplementary Dataset 7). However, 
examining species-level functional attribution data, it was clear that 
many of these differentially abundant enzymes could be explained 
by a single IBD-associated species dominating contributions of the 
enzyme to the community. More specifically, when defining ‘domi-
nating’ as ‘explaining > 50% of enzyme copies in > 50% of samples’, 
then E. coli alone dominated 220 differentially abundant enzymes, 
owing in part to that species’ strong enrichment in IBD and excep-
tionally thorough functional annotations. While some enzymes in 
this category may indeed have mechanistic connections to IBD, oth-
ers may simply expand (or shrink) in copy number alongside their 
source genomes, whose abundance is changing for reasons unre-
lated to encoding of that particular enzyme.

Of the differentially abundant enzymes, 246 were not dominated 
by any single species, suggesting that their enrichment in controls 
(or IBD) was better explained by a community-level shift in func-
tional potential, and therefore of greater mechanistic significance. 
For example, magnesium-importing ATPase (EC 3.6.3.2) was 
enriched in both CD and UC patients relative to controls (Fig. 5a). 
Magnesium deficiency has been described as a known side effect of 
IBD47, which could be explained in part by sequestration of the ion 
by the IBD-associated microbiome. Ethanolamine ammonia-lyase  

(EC 4.3.1.7) was similarly enriched in the IBD gut (Fig. 5b). This 
enzyme is involved in the production of glycerophospholipids, 
one of the most significantly enriched classes of metabolite in CD 
and UC patients (see Fig. 2a). A final example of an IBD-enriched 
enzyme was glutathione reductase (GR; EC 1.8.1.7; Fig. 5c). GR 
catalyses the production of glutathione, a compound involved in 
resistance to oxidative stresses. Oxidative stress is a hallmark of 
inflammation in the IBD-afflicted gut48, thus giving species encod-
ing GR a selective advantage in that environment.

Additional examples of differentially abundant enzymes were 
reflective of transitions from a more obligate to a facultative anaer-
obic microbiome in IBD. For example, pyruvate synthase (EC 
1.2.7.1), an anaerobic enzyme that catalyses the interconversion 
of pyruvate and acetyl coenzyme A, was enriched in controls and 
completely undetected in a subpopulation of CD patients (Fig. 5d). 
Enzymes involved in the synthesis of cobalamin (vitamin B12) were 
also enriched in controls, including precorrin-2 dehydrogenase 
(EC 1.3.1.76; Fig. 5e). While vitamin B12 (a tetrapyrrole-containing 
structure) is too large to be captured by the LC–MS methods used in 
this study, its derivatives and associated compounds may be among 
the putative tetrapyrroles that were enriched in the largest cluster of 
IBD-depleted metabolite features (see Fig. 3b).

To evaluate the potential mechanistic links between differentially 
abundant enzymes and metabolites more formally, we repeated the 
clustering and association procedures described earlier in the con-
text of metabolite–species associations. Metabolite–enzyme associ-
ations followed many of the same patterns observed for species and 
enzymes. Association density was low (3%), suggesting that most 
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metabolites associated with only a few enzymes (and vice versa); 
the vast majority of interactions (95%) were concordant with IBD 
pathogenesis (Supplementary Fig. 11). Several associations occurred 
between standard metabolites and the enzymes discussed earlier. 
For example, magnesium-importing ATPase was strongly nega-
tively associated with 2-hydroxymyristic acid (a control-enriched 
compound; Spearman’s r =  − 0.492; Fig. 5f). Conversely, precorrin-2 
dehydrogenase was positively associated with caproic acid (another 
control-enriched compound; r =  0.507; Fig. 5g). While such rela-
tionships are consistent with compounds acting as enzyme sub-
strates and products, respectively, this does not appear to be the case 
for these specific enzyme–compound pairs, suggesting that other 
factors probably mediate their associations (for example, encoding 
by or interaction with subsets of IBD-associated species).

Most IBD trends replicate in an independent validation cohort. 
We evaluated the generality of the differentially abundant metabo-
lite features and microbial species identified earlier in an indepen-
dent cohort of 20 CD and 23 UC patients and 22 non-IBD controls 
from the Netherlands (see Methods). Of 2,456 metabolite fea-
tures that were differentially abundant in CD (up or down) in the 
PRISM cohort, 2,300 (94%) trended in the same direction in the 
Netherlands cohorts, of which 959 (39% of the grand total) were 
also FDR-significant (Supplementary Fig. 12). Of 1,049 metabolite 
features that were differentially abundant in UC (most of which 
were also differentially abundant in CD), 865 (82%) trended in the 
same direction, of which 117 (11% of the grand total) were FDR-
significant. Similar patterns were observed for differentially abun-
dant microbial species: 36 of 38 species that were differentially 
abundant in CD among PRISM patients trended in the same direc-
tion among Netherlands patients, with 13 achieving statistical sig-
nificance. All 15 UC-significant species from the PRISM patients 
trended in the same direction among Netherlands patients, with 
3 achieving statistical significance. Hence, the majority of IBD-
associated changes identified in the PRISM cohort generalized in 
their directionality to the Netherlands cohorts. Statistical signifi-
cance was not replicated as consistently, which we can attribute in 
part to loss of power in the Netherlands cohort from smaller sample 
size (total n =  65 versus 155 for the PRISM cohort).

Multi-omic signatures differentiate IBD subtypes across cohorts. 
To evaluate if differences in metabolite or microbial composition 
could be used to classify patients according to IBD phenotype, we 
trained random forest (RF) classifiers on patient metabolic and 
microbial species profiles (separately and combined). Classification 
performance was evaluated within the PRISM cohort (using five-
fold cross-validation) and between cohorts by training on the entire 
PRISM cohort and validating on the independent Netherlands 
cohort. In both of these approaches, RF classifiers are trained on one 
set of samples and then tested on another (non-overlapping) set, 
meaning that testing performance does not benefit from potential 
overfitting of RF classifiers to their training data.

All RF classifiers performed considerably better than random 
in the task of distinguishing IBD and non-IBD controls, with area 
under the curve (AUC) values ranging from 0.86 to 0.92 (AUC val-
ues close to 1.0 indicate that an classifier attained a high sensitivity at 
a very low false positive rate, while a value of 0.5 is expected at ran-
dom; Fig. 6a and Supplementary Fig. 13). Cross-validation results 
(AUC 0.90–0.92) were only marginally better than independent val-
idation results (AUC 0.86–0.89), indicating that the PRISM-trained 
RF classifier generalized well to the Netherlands cohort, which is 
consistent with the feature-level concordance described earlier. RF 
classifiers trained on metabolite features versus microbial species 
performed similarly, despite the metabolite feature space being con-
siderably larger (thousands versus tens of features). The integration 
of metabolite and microbial species data did not produce a marked 

improvement in classification accuracy relative to metabolite fea-
tures alone, which is consistent with a high degree of shared infor-
mation between the gut’s microbial and metabolomic profiles.

Predicting IBD subtype (summarized simply as CD and UC) was 
comparatively more challenging. Within the PRISM cohort, metab-
olites, species and their combination predicted UC, CD or non-IBD 
control labels correctly 64–65% of the time. This is less successful 
than case/control predictions, but still considerably greater than 
random (that is, 33% correct; Fig. 6b). The most common source 
of classification error was labelling UC patients as non-IBD or CD. 
This is not surprising, given that the distribution of UC patients 
overlapped with the (largely distinct) CD and non-IBD popula-
tions (see Fig. 1b). Comparatively, non-IBD individuals were rarely 
classified into one of the two IBD subtypes, while CD patients were 
sometimes erroneously classified as UC. More distinction among 
input data types was observed when applying the PRISM-trained 
IBD subtype RF classifier to the Netherlands cohorts (Fig. 6c). 
While the metabolite-incorporating RF classifiers performed rea-
sonably well (77% correct classification), the species-based RF clas-
sifiers performed considerably worse (48% correct classification), 
largely because of marked misclassification of CD patients as UC. 
This suggests that, although many IBD-varying species trended 
similarly in the Netherlands cohort, subtype-informative details of 
their abundance distributions (as learned from the PRISM cohort) 
were less conserved.

Discussion
This study represents one of the first efforts to discover and vali-
date IBD-associated changes in the human gut metabolome and 
microbiome in an integrated multi-omic framework. Many of the 
individually differentially abundant species and metabolic classes 
identified and validated in this study (for example, bile acids and 
sphingolipids) are in agreement with previous findings, while others 
(for example, dicarboxylic acids) are, to the best of our knowledge, 
unique to this study. More generally, we observed that metabolites 
and metabolite classes were frequently depleted in IBD patients 
relative to non-IBD controls. This pattern is suggestive of a loss of 
‘metabolic diversity’ among IBD patients that is analogous to the 
loss of taxonomic (ecological) diversity observed in the IBD micro-
biome. This diversity is likely to be inclusive of a large number of 
previously undescribed, microbially derived metabolites that were 
unclassified or putatively classified in our comparisons with refer-
ence databases.

The ability of untargeted metabolomics approaches to quantify 
vast numbers of uncharacterized metabolites is both a strength 
and limitation relative to targeted approaches26. While uncharac-
terized metabolites no doubt encompass previously undescribed 
microbe- and disease-associated molecules of biological interest, 
they also include non-biological adducts and fragments of sample 
molecules, and are generally more challenging to interpret. We 
approached these challenges using a combination of methods: (1) 
experimentally validating metabolites against a standard com-
pound library, a precise but resource-intensive process; (2) approx-
imating annotation of metabolites to broad chemical classes; and 
(3) clustering of metabolites according to residual covariation 
across samples. Covariation-based clusters were found to be 
enriched for metabolites of similar physico-chemical properties, 
a form of guilt-by-association that complements existing network-
based approaches49 to metabolite characterization. The covaria-
tion-based approach suggested potential roles for many unlabelled 
metabolites that clustered with known standards (as in Fig. 3a). On 
the other hand, the process also revealed clusters of wholly unchar-
acterized, IBD-associated metabolites (as in Fig. 3b). Such clusters 
may represent microbial metabolites with pro-inflammatory or 
anti-inflammatory effects, and are prime candidates for additional 
experimental characterization.
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Computational methods also provide a guide to downstream 
experimental validation and characterization of mechanisms relat-
ing the IBD microbiome and metabolome (including identification 
of microbiome-derived metabolites). By prioritizing associations 
between microbial species and enzymes that associate with metabo-
lites independently of disease status, we enrich for potential mecha-
nistic associations that may become perturbed in IBD. Many details 
of these associations remain to be determined. For example, a posi-
tive association between a microbial taxon and metabolite could 
be explained by (1) the metabolite representing a preferred carbon 
source that promotes species growth, (2) the metabolite occurring as 
a by-product of species metabolism, or (3) the metabolite selectively 
inhibiting the growth of other species (or otherwise interacting eco-
logically). These options can be disentangled computationally by 
analysing genome and metagenome annotations, when available, 
as well as experimentally by growing microbial species in the pres-
ence of their associated metabolites and/or profiling their metabolic 
output in monoculture. Naturally, further in vivo experiments (for 
example, in mouse models of IBD) are required to confirm that 
validated microbe–metabolite associations play a causal role in IBD 
pathogenesis. Such efforts are laborious; hence, the computationally 
derived subset of putative associations uncovered in this study will 
be a critical aid, as will further bioinformatic prioritization based on 
meta-omic profiling.

The vast majority of IBD-associated species and metabolites 
discovered in the PRISM cohort agreed in directionality with an 
independent validation cohort. Statistical significance was not as 
consistently replicated, partly because of the power limitations of 
the smaller validation study (hence, further replication in a larger 
cohort could be warranted in the future). At the same time, inte-
grating individual microbial and metabolomic signals was sufficient 
to build accurate classifiers for case/control status that generalized 
to new individuals. Surprisingly, combining signals of both types 
(microbes and metabolites) did not boost classification perfor-
mance markedly. This result is suggestive of tight coupling of the 
IBD gut metabolome and microbiome, which may result from a 
combination of (1) both profiles changing in response to disease, (2) 
an altered microbiome perturbing the metabolome or (3) an altered 
metabolome perturbing the microbiome (with potential feedback 
therein). Mechanisms underlying this coupling will be naturally 
expanded through experimental validation of targeted microbe–
metabolite associations, as described earlier.

Predicting IBD subtype (UC versus CD) proved challenging, 
though this result was not surprising in light of other findings from 
the study. While CD patients did not stratify strongly by disease 
localization (see Supplementary Fig. 4), as a whole they separated 
well from non-IBD controls (see Fig. 1). The same could not be said 
for UC patients, which were dispersed into inflamed/CD-like and 
non-inflamed/control-like subpopulations, consistent with previous 
reports of high variability among UC microbiomes25. Many features 
that were individually differentially abundant in UC were also dif-
ferentially abundant in CD, while the converse was not true. This is 
typical of the UC microbiome in general, and it suggests that IBD-
linked perturbations may be divided into at least two modules: (1) 
perturbations that are associated with inflammation in general; and 
(2) perturbations that are specific to CD. The first module underlies 
the general association between multi-omic profiles and inflamma-
tion status (as measured in this study by faecal calprotectin level), 
and provides a basis for classifying case/control status. The second 
module can also aid in classifying case/control status, in that it is 
informative for CD subtype specifically. However, the absence of a 
strong UC-specific signal, coupled with heterogeneity among the UC 
subpopulation, hindered the predictability of UC status. That being 
said, a small number of molecules, including ethyl 9-hexadeceno-
ate (see Supplementary Dataset 3), were individually differentially 
abundant in UC; they make promising targets for further study.

A number of future directions are possible for expanding this 
work to improve our understanding of metagenomic and metabo-
lomic perturbations in IBD. To better differentiate UC, for example, 
it is possible that the metabolomic methods employed in this study 
missed classes of molecules that specifically vary with UC status. 
Alternatively, the stool metabolome may be imperfect for captur-
ing UC-specific signals. In such cases, profiles of serum metabolites 
might augment serum antibodies50 as diagnostic biomarkers for 
IBD/UC, while remaining less invasive than biopsy but still associa-
ble with the microbiome. While this study employed cross-sectional 
sampling of a larger number of individuals, dense longitudinal sam-
pling of a subset of individuals would further aid in the dissection 
of putative microbe–metabolite associations (by intrinsically con-
trolling for within-specific properties), and would further illumi-
nate whether the observed population substructure was stable over 
time or correlated with changes in metabolomic or microbiome 
composition. Critically, this would also help disentangle causal-
ity—which metabolite shifts precede microbial or host phenotypes 
and vice versa—as well as provide a potential predictive target for 
interception of disease activity. However, even without these addi-
tional studies, the multi-omic screens and associations uncovered 
in this study provide many actionable hypotheses regarding the 
role of specific known and yet-to-be-characterized metabolites and 
their microbial partners in IBD pathogenesis. While many of these 
changes probably result from physiological changes on the host side, 
the subset that can be confirmed to result from microbial activity 
will provide promising targets for microbiome-based IBD diagnos-
tics and therapies.

Methods
We performed untargeted metabolomic and metagenomic profiling on two IBD 
cohorts containing patients with CD and UC, and non-IBD controls. One cohort 
consisted of patients seen at the Massachusetts General Hospital (MGH, Boston, 
USA), and formed the basis of most analyses. A second (more heterogeneous) group 
of patients from the Netherlands was used to validate findings. Microbial species, 
microbial enzymes and > 8,000 metabolites were tested for differential abundance 
in IBD. Differentially abundant metabolites were clustered to identify groups of 
functionally related compounds that were similarly perturbed in IBD. Differentially 
abundant metabolites and microbial features were compared using multi-omic 
correlation to identify putative mechanistic associations. Finally, all features were 
applied to build and validate multi-omic classifiers for IBD status and subtype.

PRISM cohort description and sample handling. PRISM is a referral centre-
based, prospective cohort of IBD patients; 161 adult patients (> 18 years 
old) enroled in PRISM and diagnosed with CD, UC and non-IBD (control) 
were selected for this study, with diagnoses based on standard endoscopic, 
radiographical and histological criteria. The PRISM research protocols were 
reviewed and approved by the Partners Human Research Committee (ref. 2004-
P-001067), and all experiments adhered to the regulations of this review board. 
PRISM patient stool samples were collected at the MGH gastroenterology clinic 
and stored at − 80 °C before DNA was extracted.

Validation cohort description and sample handling. The validation cohort 
consisted of 65 patients enroled in two distinct studies from the Netherlands; 22 
controls were enroled in the LifeLines DEEP general population study51 and 43 
patients with IBD were enroled in a study at the Department of Gastroenterology 
and Hepatology at University Medical Center Groningen. Patients enroled in both 
studies collected stool using the same protocol: a single stool sample was collected 
at home and then frozen within 15 min in a conventional freezer. A research nurse 
visited all participants at home to collect home-frozen stool samples, which were 
then transported and stored at − 80 °C. The stool samples were kept frozen before 
DNA was extracted or metabolomic profiling took place, as described in the 
ensuing sections.

Approval for human patient research. Human patient research in the discovery 
(PRISM) cohort was reviewed and approved by the Partners Human Research 
Committee (ref. 2004-P-001067), and all experiments adhered to the regulations 
of this review board. Human patient research in the validation cohorts (LifeLines 
DEEP and NLIBD) was approved by the University Medical Center Groningen 
review board (ref. M12.113965 and Institutional Review Board no. 2008.338, 
respectively). All study procedures were performed in compliance with all relevant 
ethical regulations for the validation cohorts. Each participant signed an informed 
consent form prior to participation for PRISM and both validation cohorts.
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DNA extraction and metagenomic sequencing. Metagenomic data generation and 
processing were performed at the Broad Institute (Cambridge, USA). Stool DNA 
extractions were carried out using the QIAamp DNA Stool Mini Kit (QIAGEN). 
Whole-genome shotgun libraries were prepared by quantifying metagenomic DNA 
samples with the Quant-iT PicoGreen dsDNA Assay (Thermo Fisher Scientific) 
and normalized to a concentration of 50 pg μ l−1. Illumina sequencing libraries were 
prepared from 100–250 pg of DNA using the Nextera XT DNA Library Preparation 
Kit (Illumina) according to the manufacturer’s recommended protocol, with 
reaction volumes scaled accordingly. Batches of 24, 48 or 96 libraries were pooled 
by transferring equal volumes of each library using an Echo 550 Liquid Handler 
(Labcyte). Insert sizes and concentrations for each pooled library were determined 
using an Agilent Bioanalyzer DNA 1000 kit (Agilent Technologies). Metagenomic 
libraries were sequenced on the HiSeq 2500 platform (Illumina), targeting ~2.5 Gb 
of sequence per sample with 101 base pair, paired-end reads.

Read-level quality control and metagenomic profiling. Raw sequencing reads 
were quality-controlled with KneadData version 0.5.1 (http://huttenhower.sph.
harvard.edu/kneaddata). Briefly, this involved trimming low-quality bases from the 
3′  end of reads with Trimmomatic52 and then discarding trimmed reads < 60 nt in 
length. Host (human) reads were identified and removed by mapping against the 
human genome (hg19 build) with Bowtie 2 (ref. 53).

Quality-filtered metagenomes were taxonomically profiled using MetaPhlAn2 
version 2.2.0 (ref. 54) with default parameters. Only species-level relative abundance 
data were considered in this study. Species that failed to exceed 0.1% relative 
abundance in at least five samples were excluded. Functional profiling was 
performed using HUMAnN2 version 0.9.4 in UniRef90 mode (http://huttenhower.
sph.harvard.edu/humann2)55. HUMAnN2 initially maps metagenomic reads to the 
pangenomes of species identified during taxonomic profiling (using Bowtie 2).  
Coding sequences in these pangenomes have been pre-annotated to their 
respective UniRef90 families56. Reads that did not align to a pangenome were 
mapped to UniRef90 by translated search with DIAMOND57. Hits to UniRef90-
annotated sequences are weighted according to alignment quality, sequence length 
and sequence coverage. Gene-level outputs are produced in reads per kilobase units 
and stratified according to known/unclassified community contributions. Per-
sample gene abundances were sum-normalized to ppm units. Gene abundances 
can be regrouped to other functional annotation systems based on annotations 
from UniProt58. For this study, gene abundances were regrouped (summed) 
according to EC number.

Metabolite profiling from stool samples. The gut metabolomic profiles of 
participants were measured from stool samples using a combination of four LC–
MS methods that measure complementary metabolite classes. These range from 
polar metabolites (for example, organic acids), lipids (for example, triglycerides), 
free fatty acids and bile acids. In each method, the MS data were acquired using 
sensitive, high-resolution mass spectrometers (full scan MS profiling using Q 
Exactive Hydro Quadrupole Orbitrap and Exactive Plus Mass Spectrometers, 
Thermo Fisher Scientific) that enabled non-targeted measurement of (1) 
metabolites of known identity and (2) heretofore unidentified metabolites (for 
example, microbe-derived) in the same run.

Stool samples (weight range: 50.5–167.8 mg) were homogenized in 4 µ l of 
water per mg stool sample weight using a bead mill (TissueLyser II;  QIAGEN) 
and the aqueous homogenates were aliquoted for metabolite profiling analyses. 
Four separate LC–MS methods were used to measure polar metabolites and lipids 
in each sample. Methods 1, 2 and 3 were conducted using two LC–MS systems 
comprised of Nexera X2 U-HPLC System (Shimadzu Scientific Instruments) 
and Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer. Method 4 was 
conducted using a Nexera X2 U-HPLC coupled to an Exactive Plus Orbitrap Mass 
Spectrometer (Thermo Fisher Scientific).

Method 1: positive ion mode MS analyses of polar metabolites. LC–MS samples were 
prepared from stool homogenates (10 µ l) via protein precipitation with the addition 
of nine volumes of 74.9:24.9:0.2 v/v/v acetonitrile/methanol/formic acid containing 
stable isotope-labelled internal standards (l-valine-d8, Isotec;  l-phenylalanine-d8, 
Cambridge Isotope Laboratories). The samples were centrifuged (10 min, 9,000g, 
4 °C), and the supernatants were injected directly onto a 150 ×  2 mm Atlantis 
Silica HILIC Column (Waters). The column was eluted isocratically at a flow rate 
of 250 µ l min−1 with 5% mobile phase A (10 mM ammonium formate and 0.1% 
formic acid in water) for 1 min followed by a linear gradient to 40% mobile phase 
B (acetonitrile with 0.1% formic acid) over 10 min. MS analyses were carried out 
using electrospray ionization in the positive ion mode using full scan analysis over 
m/z 70–800 at 70,000 resolution and 3 Hz data acquisition rate. Additional MS 
settings were: ion spray voltage, 3.5 kV;  capillary temperature, 350 °C;  probe heater 
temperature, 300 °C;  sheath gas, 40;  auxiliary gas, 15;  S-lens RF level 40.

Method 2: negative ion mode MS analyses of polar metabolites. LC–MS samples were 
prepared from stool homogenates (30 µ l) via protein precipitation with the addition 
of four volumes of 80% methanol containing inosine 15N4, thymine-D4 and 
glycocholate-D4 internal standards (Cambridge Isotope Laboratories). The samples 
were centrifuged (10 min, 9,000g, 4 °C) and the supernatants were injected directly 

onto a 150 ×  2.0 mm Luna NH2 column (Phenomenex). The column was eluted at 
a flow rate of 400 µ l min−1 with initial conditions of 10% mobile phase A (20 mM 
ammonium acetate and 20 mM ammonium hydroxide in water) and 90% mobile 
phase B (10 mM ammonium hydroxide in 75:25 v/v acetonitrile/methanol) followed 
by a 10 min linear gradient to 100% mobile phase A. MS analyses were carried out 
using electrospray ionization in the negative ion mode using full scan analysis over 
m/z 60–750 at 70,000 resolution and 3 Hz data acquisition rate. Additional MS 
settings were: ion spray voltage, 3.0 kV;  capillary temperature, 350 °C;  probe heater 
temperature, 325 °C;  sheath gas, 55;  auxiliary gas, 10;  and S-lens RF level 40.

Method 3: negative ion mode analyses of metabolites of intermediate polarity (for 
example, bile acids and free fatty acids). Stool homogenates (30 µ l) were extracted 
using 90 µ l methanol containing prostaglandin E2-d4 as the internal standard 
(Cayman Chemical) and centrifuged (10 min, 9,000g, 4 °C). The supernatants  
(10 µ l) were injected onto a 150 ×  2 mm ACQUITY UPLC HSS T3 column 
(Waters). The column was eluted isocratically at a flow rate of 400 µ l min−1 with 
25% mobile phase A (0.1% formic acid in water) for 1 min followed by a linear 
gradient to 100% mobile phase B (acetonitrile with 0.1% formic acid) over 11 min. 
MS analyses were carried out using electrospray ionization in the negative ion 
mode using full scan analysis over m/z 200–550 at 70,000 resolution and 3 Hz data 
acquisition rate. Additional MS settings were: ion spray voltage, 3.5 kV;  capillary 
temperature, 320 °C;  probe heater temperature, 300 °C;  sheath gas, 45;  auxiliary 
gas, 10;  and S-lens RF level 60.

Method 4: polar and non-polar lipids. Lipids were extracted from stool homogenates 
(10 µ l) using 190 µ l isopropanol containing 1-dodecanoyl-2-tridecanoyl-sn-
glycero-3phosphocholine as the internal standard (Avanti Polar Lipids). After 
centrifugation (10 min, 9,000g, ambient temperature), supernatants (10 µ l) were 
injected directly onto a 100 ×  2.1 mm ACQUITY UPLC BEH C8 column (1.7 µ m;   
Waters). The column was eluted at a flow rate of 450 µ l min−1 isocratically for 
1 min at 80% mobile phase A (95:5:0.1 v/v/v 10 mM ammonium acetate/methanol/
acetic acid), followed by a linear gradient to 80% mobile phase B (99.9:0.1 v/v 
methanol/acetic acid) over 2 min, a linear gradient to 100% mobile phase B over 
7 min and then 3 min at 100% mobile phase B. MS analyses were carried out using 
electrospray ionization in the positive ion mode using full scan analysis over m/z 
200–1,100 at 70,000 resolution and 3 Hz data acquisition rate. Additional MS 
settings were: ion spray voltage, 3.0 kV;  capillary temperature, 300 °C;  probe heater 
temperature, 300 °C;  sheath gas, 50;  auxiliary gas, 15;  and S-lens RF level 60.

Post-processing. We used Expressionist version 9.0 (Genedata; Refiner module 
for MS) to process raw LC–MS data for chemical noise removal, to detect 
chromatographic peaks and isotope clusters, align retention times between samples 
and assign putative metabolite identities via database look up. Detailed parameter 
settings are provided as Supplementary Dataset 8. Across samples, the combination 
of the four LC–MS methods generated 8,869 clustered features, characterized by 
chromatographic retention time and exact mass to <  5 ppm accuracy. Note that 
these clustered features, referred to as metabolites or metabolite features elsewhere 
in the text, are presumed to represent a single molecular species. Broader clusters 
of metabolite features, presumed to represent families of related molecular species, 
were also constructed using the results of linear regression analysis and are 
described later. Within each sample and LC–MS method, feature intensities were 
sum-normalized to ppm units.

A subset of 466 metabolites were identified more precisely using reference data 
generated from an in-house compound library; 3,829 metabolite features were 
linked to putative identifiers based on accurate m/z matching against the HMDB. 
Analyses of putatively matched features in the text focus on their molecular classes, 
rather than their identities. More specifically, we assigned HMDB subclasses 
to these features as a form of broad chemical classification. Subclasses assigned 
to > 100 features (for example, ‘fatty acyls’) were further broken down according 
HMDB’s ‘direct parent’ annotations.

Profile-level quality control. Before downstream analysis, metagenomic and 
metabolomic samples were subjected to profile-level quality control. First, we isolated 
the set of individuals with complete profiles of both types. All 65 Netherlands 
patients passed this filter, while 6 of 161 PRISM patients were missing one of the 
two profiles, for example, because of a failed sequencing run, and were excluded 
from subsequent analysis. Next, for both profile types, we considered the median 
Bray–Curtis distance of each PRISM sample to other samples in the PRISM cohort 
(the same distances form the basis of the ordinations in Fig. 1). If this distance was 
unusually large (defined as ‘above the upper inner fence of all values’), the sample 
was considered an outlier. All PRISM metagenomic and metabolomic profiles passed 
this filter. Repeating this procedure within-phenotype (CD, UC, non-IBD control), 
we identified one potential control outlier among the PRISM metagenomic profiles, 
and a different control outlier plus one UC outlier among the PRISM metabolomic 
profiles. Because these profiles were representative of the human gut microbiome as 
a whole (if not their specific phenotype), they were retained for further analyses.

Statistical analyses. We carried out ordination analyses (Fig. 1; Supplementary 
Figs. 3 and 4) using classical multidimensional scaling on matrices of between-
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sample from any of the measured metabolites and/or species). Feature importance 
scores were retained for downstream analysis.

Growth effects of metabolites on R. gnavus. We grew R. gnavus (ATCC) in brain 
heart infusion medium medium (37 g l−1) containing: 5% sterile-filtered foetal 
bovine serum (Sigma-Aldrich); 1% vitamin K1-hemin solution (BD Biosciences); 
1% trace mineral supplement (ATCC); 1% vitamin supplement (ATCC); 1 g l−1 
d-(+ )-cellobiose (Sigma-Aldrich); 1 g l−1 d-(+ )-maltose (Sigma-Aldrich); 1 g l−1 
d-(+ )-fructose (Sigma-Aldrich); and 0.5 g l−1 l-cysteine (Sigma-Aldrich). Growth 
occurred under anaerobic conditions (atmosphere 5% H2, 20% CO2, 75% N2) in a 
soft-sided vinyl chamber (Coy Laboratory Products). We sterilized the media using 
a Corning filter unit (0.22 µ m pore diameter). All metabolite standards (Sigma-
Aldrich) were brought to 100 mM in DMSO (Sigma-Aldrich) before dilution for 
dose assays. Overnight bacterial cultures were diluted 100-fold in appropriate 
media and 40 µ l were dispensed per well in 384-well microplates (low evaporation 
lid, Costar 3680) containing metabolites or DMSO control. The microplates were 
shaken to ensure homogeneity; bacterial growth was monitored anaerobically 
(absorbance at 600 nm) in a microplate reader (PowerWave HT Microplate 
Spectrophotometer, BioTek) for 24 h at 37 °C without shaking. The values recorded 
for DMSO controls and metabolite-treated triplicates were averaged.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. With the exception of Genedata Expressionist, the software 
packages used in this study are free and open source. The bioBakery tools 
(including KneadData, MetaPhlAn2 and HUMAnN2) are available via  
http://huttenhower.sph.harvard.edu/biobakery as source code and installable 
packages. The Python packages SciPy, Matplotlib (used for all data visualizations), 
statsmodels and scikit-learn are available from http://pypi.python.org. The 
R package vegan is available from http://cran.r-project.org. Analysis scripts 
employing these packages (and associated usage notes) are available from the 
authors upon request.

Data availability
Metagenomic sequences for the PRISM, LifeLines DEEP and NLIBD cohorts 
are available via SRA with BioProject number PRJNA400072. Metabolomics 
data (accession number PR000677) are available at the National Institutes of 
Health Common Fund’s Metabolomics Data Repository and Coordinating 
Center (supported by National Institutes of Health grant no. U01-DK097430): 
Metabolomics Workbench (http://www.metabolomicsworkbench.org). Tables 
of processed metabolite, microbial species and microbial enzyme abundance are 
available as Supplementary Datasets 2, 4 and 6.
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sample diversity scores (Bray–Curtis distance). We used the Shannon diversity 
index to quantify within-sample diversity. Metabolomic diversity scores considered 
all measured metabolites (sum-normalized first within-method and then within-
sample), while taxonomic diversity scores focused on species-level relative 
abundances. To control for within-sample diversity when comparing ordination 
axes, we generated best-fit lines between axis values and dataset-specific diversity 
measures, saved the resulting residual values and then compared dataset-specific 
residuals with Spearman’s rank correlation. Other comparisons involving between-
sample diversity and sample metadata were made using permutational analysis of 
variance as implemented in the ‘adonis’ function from R’s ‘vegan’ package (using 
104 permutations). Specifically, we computed the influence of diagnosis (CD, UC, 
non-IBD) across all patient metabolomic and metagenomic distances, and the 
influence of disease localization across the metabolomic and metagenomic profiles 
of CD patients. These analyses did not consider additional covariates.

We used linear models implemented in Python’s ‘statsmodels’ package to 
identify microbial species, enzymes and metabolite features that were differentially 
abundant in IBD (http://www.statsmodels.org). Each data type was analysed 
separately in each cohort. Relative abundance values were log-transformed 
to variance-stabilize the data. Zero values were additively smoothed by half 
the smallest non-zero measurement on a per-sample basis. For both cohorts, 
we modelled the transformed abundance of each feature as a function of IBD 
phenotype (modelled as a categorical variable with ‘non-IBD control’ as the 
reference state), with age as a continuous covariate in both cohorts, and four 
medications (antibiotics, immunosuppressants, mesalamine and steroids) as binary 
covariates in the PRISM cohort. Effect sizes take the form of model t statistics 
(CD versus non-IBD control and UC versus non-IBD control) with associated 
two-tailed P values. Nominal P values were adjusted for multiple hypothesis 
testing with a target FDR of 0.05. A feature (metabolite, species or enzyme) was 
considered ‘differentially abundant’ in IBD if it passed this filter in either the CD- 
or UC-centred comparisons. Residual abundance values from the linear models 
were retained for use in subsequent analyses.

We identified molecular classes (as defined earlier) that were significantly 
enriched or depleted in IBD using rank-based enrichment analysis. Specifically, 
each metabolite was ranked according to its t statistics for CD- or UC-focused 
comparisons. For each class of molecule, we then evaluated if its members were 
enriched at the top or bottom of the list by performing a Wilcoxon signed-rank 
comparison of t values in the class versus those outside the class. Only classes with 
at least ten putative members were evaluated. Enrichment P values were corrected 
for multiple hypothesis testing as described earlier.

Unsupervised clustering. We performed clustering of differentially abundant 
features using a custom approach. Features were clustered on their residual 
abundance values from the linear modelling approach described earlier. This 
procedure enriches for covariation between features that is independent of mutual 
covariation with disease status (or other patient metadata, such as age or medication 
use). Features were ranked according to the significance of their association with 
IBD (the smaller of the two P values from the CD- and UC-centred comparisons). 
The highest-ranked feature was seeded into an initial cluster. Each subsequent 
feature was then compared to each extant cluster. If the feature had a mean 
similarity to the cluster’s members exceeding a threshold, the feature was added to 
that cluster. (For all clustering analyses, we applied Spearman’s rank correlation as 
a similarity measure with a threshold of r =  0.7.) If the feature was not added to a 
cluster in this way, it was used to seed a new cluster. After considering all features, 
clusters were renumbered according to their size, such that cluster 1 had the most 
members, and so on. Each cluster was characterized by a representative member. 
For metabolite clusters containing standards, this representative was the standard 
closest to the cluster centroid; the true centroid was used for clusters without 
standards. Similarly, characterized (versus ‘unclassified’) species-level taxonomic 
features were preferred as representative features in microbial species clusters.

To evaluate guilt-by-association principles across the metabolite clusters, we 
compared pairs of metabolites present in the same cluster to all pairs of metabolites 
present in clusters with two or more members (that is, ignoring singleton clusters). 
To compare retention times, we evaluated the median difference in retention 
time for co-clustered versus all metabolite pairs (1.4 versus 3.8 min, a 2.7-fold 
reduction). The same procedure was used to compare mass/charge ratios (59 
versus 174 Da, a threefold reduction). To compare chemical class, we restricted the 
analysis to annotated metabolites present in clusters with at least two annotated 
members; 18.8% of co-clustered metabolites were annotated to the same class, 
compared with 1.2% of all metabolites, a 15-fold enrichment for similarity.

Random forest classification. We performed random forest classification using 
the implementation of this method in Python’s scikit-learn package (http://scikit-
learn.org/). We considered separate RF classifiers for predicting (1) IBD/control 
status and (2) CD/UC/control status. We trained RF classifiers on the PRISM 
cohort using (1) fivefold cross-validation and (2) treating the entire cohort as a 
training set for independent validation against the Netherlands cohort. In each 
case, subject labels were randomly balanced before training and 100 trees were 
considered (other scikit-learn defaults were left unchanged). Features were not 
filtered in any way before random forest training (that is, the RF classifer could 
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    Experimental design
1.   Sample size

Describe how sample size was determined. No sample-size calculation was performed. Controlling for clinical covariates and 
correcting for multiple hypothesis testing, we found 100s of strong, statistically 
significant, and biologically relevant associations between multi'omic features and 
IBD diagnosis in this cohort. In other words, the study was sufficiently well-
powered to produce many useful results.

2.   Data exclusions

Describe any data exclusions. As discussed in the main text, four (4) subjects from the PRISM cohort with 
metabolomic profiles but NOT metagenomic profiles were excluded from the final 
analysis. Because the main goal of this work was to compare metagenomic and 
metabolomic data in the context of IBD, any subjects lacking either of the two data 
types would have to be excluded. This was a pre-established criterion of the study.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

As discussed in the main text, the vast majority of individual trends replicated (at 
least in sign) within an independent validation cohort. In addition, global properties 
of subjects' multi'omic profiles were sufficient to predict disease status in the 
validation cohort with ~80% accuracy.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Not applicable. (This is a cross-sectional study of multiple pre-defined cohorts of 
individuals subdivided by pre-defined diagnosis.)

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Blinding was not applicable during data collection because study subjects had 
already been diagnosed in order to be recruited for the study. All samples were de-
identified without any diagnostic information prior to data generation. During 
analysis, diagnosis was always used as a variable in the models, therefore blinding 
would have been impossible.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Metabolomic data were pre-processed with Genedata Expressionist v9.0. 
Metagenomic data were pre-processed with the free and open bioBakery 
metagenomics workflow (kneadData v0.5.1 for read-level quality control, 
MetaPhlAn2 v2.2.0 for taxonomic profiling, and HUMAnN2 v0.9.4 for functional 
profiling). Statistical analyses were carried out with free and open packages in 
Python (scipy, matplotlib, statsmodels, and scikit-learn) and R (vegan). Additional 
software details are provided in the main text and Code Availability statement.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

Stool samples used in the study were largely exhausted during metabolomic and 
metagenomic screening. All chemical reagents, including the library of chemical 
standards used for metabolome characterization, are readily available through 
commercial vendors. Specifically, molecules and media reagents were purchased 
though Sigma-Aldrich, VWR, and ATCC.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

PRISM Cohort: total N=155; diagnosis: 34 non-IBD control, 53 UC, 68 CD; sex: 74 
male, 81 female; age: 41.7 ± 16.9 yr (mean ± std. dev.). Netherlands cohorts: total 
N=65; diagnosis: 22 non-IBD control, 20 CD, 23 UC; sex: 16 male, 27 female, 22 not 
listed; age: 45.4 ± 15.5 yr.
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