1,352 research outputs found

    Radio light curves during the passage of cloud G2 near Sgr A*

    Full text link
    We calculate radio light curves produced by the bow shock that is likely to form in front of the G2 cloud when it penetrates the accretion disk of Sgr A*. The shock acceleration of the radio-emitting electrons is captured self-consistently by means of first-principles particle-in-cell simulations. We show that the radio luminosity is expected to reach maximum in early 2013, roughly a month after the bow shock crosses the orbit pericenter. We estimate the peak radio flux at 1.4 GHz to be 1.4 - 22 Jy depending on the assumed orbit orientation and parameters. We show that the most promising frequencies for radio observations are in the 0.1<nu<1 GHz range, for which the bow shock emission will be much stronger than the intrinsic radio flux for all the models considered.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Automatic Goal Discovery in Subgoal Monte Carlo Tree Search

    Get PDF
    Monte Carlo Tree Search (MCTS) is a heuristic search algorithm that can play a wide range of games without requiring any domain-specific knowledge. However, MCTS tends to struggle in very complicated games due to an exponentially increasing branching factor. A promising solution for this problem is to focus the search only on a small fraction of states. Subgoal Monte Carlo Tree Search (S-MCTS) achieves this by using a predefined subgoal-predicate that detects promising states called subgoals. However, not only does this make S-MCTS domain-dependent, but also it is often difficult to define a good predicate. In this paper, we propose using quality diversity (QD) algorithms to detect subgoals in real-time. Furthermore, we show how integrating QD-algorithms into S-MCTS significantly improves its performance in the Physical Travelling Salesmen Problem without requiring any domain-specific knowledge

    Particle Acceleration in Pulsar Wind Nebulae: PIC modelling

    Full text link
    We discuss the role of particle-in-cell (PIC) simulations in unveiling the origin of the emitting particles in PWNe. After describing the basics of the PIC technique, we summarize its implications for the quiescent and the flaring emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be emerging that, in addition to the standard scenario of particle acceleration via the Fermi process at the termination shock of the pulsar wind, magnetic reconnection in the wind, at the termination shock and in the Nebula plays a major role in powering the multi-wavelength signatures of PWNe.Comment: 32 pages, 16 figures, to appear in the book "Modelling Nebulae" edited by D. Torres for Springer, based on the invited contributions to the workshop held in Sant Cugat (Barcelona), June 14-17, 201

    Stochastic Electron Acceleration by Temperature Anisotropy Instabilities Under Solar Flare Plasma Conditions

    Get PDF
    Using 2D particle-in-cell plasma simulations, we study electron acceleration by temperature anisotropy instabilities, assuming conditions typical of above-the-loop-top sources in solar flares. We focus on the long-term effect of Te,⊥ > Te,∥ instabilities by driving the anisotropy growth during the entire simulation time through imposing a shearing or a compressing plasma velocity (Te,⊥ and Te,∥ are the temperatures perpendicular and parallel to the magnetic field). This magnetic growth makes Te,⊥/Te,∥ grow due to electron magnetic moment conservation, and amplifies the ratio ωce/ωpe from ∼0.53 to ∼2 (ωce and ωpe are the electron cyclotron and plasma frequencies, respectively). In the regime ωce/ωpe ≲ 1.2–1.7, the instability is dominated by oblique, quasi-electrostatic modes, and the acceleration is inefficient. When ωce/ωpe has grown to ωce/ωpe ≳ 1.2–1.7, electrons are efficiently accelerated by the inelastic scattering provided by unstable parallel, electromagnetic z modes. After ωce/ωpe reaches ∼2, the electron energy spectra show nonthermal tails that differ between the shearing and compressing cases. In the shearing case, the tail resembles a power law of index αs ∼ 2.9 plus a high-energy bump reaching ∼300 keV. In the compressing runs, αs ∼ 3.7 with a spectral break above ∼500 keV. This difference can be explained by the different temperature evolutions in these two types of simulations, suggesting that a critical role is played by the type of anisotropy driving, ωce/ωpe, and the electron temperature in the efficiency of the acceleration
    • …
    corecore